47 research outputs found

    High Power Capacitive Power Transfer for Electric Vehicle Charging Applications

    Full text link
    Capacitive power transfer (CPT) technology is an effective way to charge electric vehicles, in which electric fields between metal plates are used to transfer power. Compared to the conventional inductive power transfer (IPT) system, a CPT system has three advantages: it does not generate eddy-current loss in nearby metal objects; it can reduce the system weight and cost; it has better misalignment performance. However, the coupling capacitance in a CPT system is usually in the pF range, which limits the CPT system power and efficiency. Through overcoming the limitation of small capacitance in a CPT system, this dissertation has achieved three breakthroughs in CPT technology: the system power is increased from several tens of watts to several kW; the transfer distance is increased from less than 1 mm to hundreds of mm; the transfer efficiency is increased from about 30% to over 90%. A double-sided LCLC compensation circuit has been proposed to realize high-power and long-distance capacitive power transfer. The compensation circuit provides resonances with the coupling capacitance, and increases the voltages on metal plates to kV level to achieve kW power transfer. A prototype has been constructed and validates the proposed circuit. Experimental results show that the prototype realizes 2.4 kW power transfer across an air-gap distance of 150 mm with a dc-dc efficiency of 90.8%. The experiments also show that the CPT system has better misalignment performance than the conventional IPT system. An IPT-CPT combined system has also been proposed to integrate the IPT and CPT technology together. The combination can increase the efficiency of the CPT system, and improve the misalignment performance of the IPT system. A prototype has been constructed to validate the combined idea. Experimental results show that the prototype realizes 2.84 kW power transfer across an air-gap distance of 150 mm with a dc-dc efficiency of 94.4%. Using the designed LCLC compensation circuit, a dynamic CPT system has been proposed to realize power transfer to receivers in moving status. A long-track coupler structure is used to reduce the pulsation of received power. A prototype has been constructed to validate dynamic charging. Experimental results show that the prototype realizes 154W power transfer across an air-gap distance of 50 mm with a dc-dc efficiency of 85.4%. Considering practical applications, the safety issues and foreign object influence have been studied in this dissertation. The high voltage issue can be solved by reliable insulation, and the electric field emissions can be reduced through capacitive coupler structure design. The foreign object, either metallic or dielectric, can influence the coupling capacitances in a CPT system depends on the position and size. The CPT system can also influence the voltage and power loss in the foreign object. To sum up, this dissertation has demonstrated that the CPT technology is a good solution to realize the charging of electric vehicles. In future work, the power density and efficiency of the CPT system will be further improved to make it more competitive with the inductive and conductive charging technology.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138493/1/feilu_1.pd

    Pyroelectric detector signal measurement and processing

    Get PDF
    Práce se zabývá fyzikálními vlastnostmi pyroelektrických senzorů a jejich praktickým využitím. Součástí práce je návrh a realizace měřící aparatury, jež bude využita k měření fyzikálních vlastností senzorů. Pro měření signálů pyroelektrického senzoru bude navržen nízkošumový zesilovač. Součástí práce je také návrh a realizace algoritmu pro lokalizaci infračerveného zdroje záření (plamene) v prostoru, na základě vyhodnoceného analogového signálu.The thesis analyzes the physical properties of the pyroelectric sensors and its practical use. Essential part of the work is the design and realization of the measuring set-up, which is used for the measurements of the sensors physical properties. With this workbench, main parameters of the pyroelectric sensors have been obtained. The second part of the work deals with a low noise preamplifier designing. This device was designed for the pyroelectric sensor signal measurements. The amplifier is designed to be used for a low noise, wide band measuring. During the process of amplifier designing, all the noise components have been investigated separately, using operational amplifiers models. The objective of the last part of this work is to develop the system, which would be able to localize an infrared (IR) emitting source located somewhere in the space between the installed pyroelectric sensors. For this purpose, classical localization methods could be used as well as the artificial neural networks (ANN), which are becoming still more popular these days. The system is able to detect the exact placement of the IR radiation source.

    Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Applications of Power Electronics:Volume 2

    Get PDF

    Development of multi-MHz Class-D soft-switching inverters

    Get PDF
    Wireless Power Transmission (WPT) systems are becoming rapidly mature and accessible to customers, and it is expected that they are going to take a large share of the electrical equipment market around the world in the near future. Many tech companies and university research labs have recently focused on design, development, and optimization of different blocks of these systems. WPT systems can be designed to transfer power either through electric fields or magnetic fields. Operating at the multi-MHz frequency will bring about the smaller size of the wireless link for both types of WPT systems. The advent of Wide Bandgap (WBG) devices like Gallium Nitride (GaN) FETs and Silicon Carbide (SiC) MOSFETs has paved the road to design multi-MHz inverters and use them as the Radio Frequency (RF) power source in the transmitter of WPT systems. Designing an efficient inverter which can maintain its soft-switching performance while facing variable load or delivering variable output power is one of the major design challenges in this field. The second challenge in this area is related to the difficulties of Electromagnetic Compatibility (EMC) of the inverter, which is the direct result of operating at MHz switching frequency range. The Electromagnetic Interference (EMI) level can be reduced by designing a stronger filter or trying to remove the harmonics from the switching source. In this thesis, to tackle the first challenge mentioned above regarding soft switching, the Dynamic Dead-Time Control (DDTC) approach is proposed and utilized to sustain the soft-switching of a multi-MHz Full-Bridge (FB) Class-D inverter over the full range of active load and output power. Simulation results are presented to show that dynamically controlling the Dead-Time (DT) during input DC voltage control and load variations, reduces switch-node voltage overshoot, prevents large current spikes in the switching devices, and reduces associated high switching loss. Finally, experimental results obtained from the prototype of the system are provided to validate the effectiveness of the proposed approach. Then, a soft-switching multi-MHz multi-level Class-D inverter is developed to address the second challenge of EMI issues associated with MHz switching frequency operation.The inverter is designed to eliminate the 3rd and 5th harmonics from its output voltage waveform. This will, in turn, make it possible to meet EMC and achieve the same level of harmonic attenuation on the output of the inverter with a smaller size and more efficient output EMI filter as opposed to utilizing a bulky, high-order, High-Quality (HQ) filter. The impact of DT on the modulation parameters of the multi-level inverter is investigated through mathematical analysis, and the results are utilized during the system simulations and practical implementation. A prototype is built to validate the theoretical and simulation analysis on a practical testbed. The harmonic analysis comparison carried out between the experimental results obtained from the multi-level inverter and FB Class-D inverter prototypes shows how the multi-level inverter is capable of suppressing unwanted 3rd and 5th harmonic to a much lower level which in turn leads to smaller size and more efficient output filter

    Integrated RF oscillators and LO signal generation circuits

    Get PDF
    This thesis deals with fully integrated LC oscillators and local oscillator (LO) signal generation circuits. In communication systems a good-quality LO signal for up- and down-conversion in transmitters is needed. The LO signal needs to span the required frequency range and have good frequency stability and low phase noise. Furthermore, most modern systems require accurate quadrature (IQ) LO signals. This thesis tackles these challenges by presenting a detailed study of LC oscillators, monolithic elements for good-quality LC resonators, and circuits for IQ-signal generation and for frequency conversion, as well as many experimental circuits. Monolithic coils and variable capacitors are essential, and this thesis deals with good structures of these devices and their proper modeling. As experimental test devices, over forty monolithic inductors and thirty varactors have been implemented, measured and modeled. Actively synthesized reactive elements were studied as replacements for these passive devices. At first glance these circuits show promising characteristics, but closer noise and nonlinearity analysis reveals that these circuits suffer from high noise levels and a small dynamic range. Nine circuit implementations with various actively synthesized variable capacitors were done. Quadrature signal generation can be performed with three different methods, and these are analyzed in the thesis. Frequency conversion circuits are used for alleviating coupling problems or to expand the number of frequency bands covered. The thesis includes an analysis of single-sideband mixing, frequency dividers, and frequency multipliers, which are used to perform the four basic arithmetical operations for the frequency tone. Two design cases are presented. The first one is a single-sideband mixing method for the generation of WiMedia UWB LO-signals, and the second one is a frequency conversion unit for a digital period synthesizer. The last part of the thesis presents five research projects. In the first one a temperature-compensated GaAs MESFET VCO was developed. The second one deals with circuit and device development for an experimental-level BiCMOS process. A cable-modem RF tuner IC using a SiGe process was developed in the third project, and a CMOS flip-chip VCO module in the fourth one. Finally, two frequency synthesizers for UWB radios are presented
    corecore