2,482 research outputs found

    A primal-dual decomposition based interior point approach to two-stage stochastic linear programming

    Get PDF
    Decision making under uncertainty is a challenge faced by many decision makers. Stochastic programming is a major tool developed to deal with optimization with uncertainties that has found applications in, e.g. finance, such as asset-liability and bond-portfolio management. Computationally however, many models in stochastic programming remain unsolvable because of overwhelming dimensionality. For a model to be well solvable, its special structure must be explored. Most of the solution methods are based on decomposing the data. In this paper we propose a new decomposition approach for two-stage stochastic programming, based on a direct application of the path-following method combined with the homogeneous self-dual technique. Numerical experiments show that our decomposition algorithm is very efficient for solving stochastic programs. In particular, we apply our deompostition method to a two-period portfolio selection problem using options on a stock index. In this model the investor can invest in a money-market account, a stock index, and European options on this index with different maturities. We experiment our model with market prices of options on the S&P500

    An interior-point and decomposition approach to multiple stage stochastic programming

    Get PDF
    There is no abstract of this report

    On the relationship between bilevel decomposition algorithms and direct interior-point methods

    Get PDF
    Engineers have been using bilevel decomposition algorithms to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upperlevel problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used bilevel decomposition algorithms may fail to converge even when the starting point is very close to the minimizer. In this paper, we establish a relationship between a particular bilevel decomposition algorithm, which only performs one iteration of an interior-point method when solving the subproblems, and a direct interior-point method, which solves the problem in its original (integrated) form. Using this relationship, we formally prove that the bilevel decomposition algorithm converges locally at a superlinear rate. The relevance of our analysis is that it bridges the gap between the incipient local convergence theory of bilevel decomposition algorithms and the mature theory of direct interior-point methods

    A decomposition procedure based on approximate newton directions

    Get PDF
    The efficient solution of large-scale linear and nonlinear optimization problems may require exploiting any special structure in them in an efficient manner. We describe and analyze some cases in which this special structure can be used with very little cost to obtain search directions from decomposed subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare the resulting procedures with direct methods, as well as to study the impact of different preconditioner choices

    A DECOMPOSITION PROCEDURE BASED ON APPROXIMATE NEWTON DIRECTIONS

    Get PDF
    The efficient solution of large-scale linear and nonlinear optimization problems may require exploiting any special structure in them in an efficient manner. We describe and analyze some cases in which this special structure can be used with very little cost to obtain search directions from decomposed subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare the resulting procedures with direct methods, as well as to study the impact of different preconditioner choices.

    Regularized Decomposition of High-Dimensional Multistage Stochastic Programs with Markov Uncertainty

    Full text link
    We develop a quadratic regularization approach for the solution of high-dimensional multistage stochastic optimization problems characterized by a potentially large number of time periods/stages (e.g. hundreds), a high-dimensional resource state variable, and a Markov information process. The resulting algorithms are shown to converge to an optimal policy after a finite number of iterations under mild technical assumptions. Computational experiments are conducted using the setting of optimizing energy storage over a large transmission grid, which motivates both the spatial and temporal dimensions of our problem. Our numerical results indicate that the proposed methods exhibit significantly faster convergence than their classical counterparts, with greater gains observed for higher-dimensional problems
    corecore