425 research outputs found

    Resource Management Techniques in Cloud-Fog for IoT and Mobile Crowdsensing Environments

    Get PDF
    The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks

    Allocation of Heterogeneous Resources of an IoT Device to Flexible Services

    Full text link
    Internet of Things (IoT) devices can be equipped with multiple heterogeneous network interfaces. An overwhelmingly large amount of services may demand some or all of these interfaces' available resources. Herein, we present a precise mathematical formulation of assigning services to interfaces with heterogeneous resources in one or more rounds. For reasonable instance sizes, the presented formulation produces optimal solutions for this computationally hard problem. We prove the NP-Completeness of the problem and develop two algorithms to approximate the optimal solution for big instance sizes. The first algorithm allocates the most demanding service requirements first, considering the average cost of interfaces resources. The second one calculates the demanding resource shares and allocates the most demanding of them first by choosing randomly among equally demanding shares. Finally, we provide simulation results giving insight into services splitting over different interfaces for both cases.Comment: IEEE Internet of Things Journa

    Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordCritical infrastructure systems are vital to underpin the functioning of a society and economy. Due to ever-increasing number of Internet-connected Internet-of-Things (IoTs) / Industrial IoT (IIoT), and high volume of data generated and collected, security and scalability are becoming burning concerns for critical infrastructures in industry 4.0. The blockchain technology is essentially a distributed and secure ledger that records all the transactions into a hierarchically expanding chain of blocks. Edge computing brings the cloud capabilities closer to the computation tasks. The convergence of blockchain and edge computing paradigms can overcome the existing security and scalability issues. In this paper, we first introduce the IoT/IIoT critical infrastructure in industry 4.0, and then we briefly present the blockchain and edge computing paradigms. After that, we show how the convergence of these two paradigms can enable secure and scalable critical infrastructures. Then, we provide a survey on state-of-the-art for security and privacy, and scalability of IoT/IIoT critical infrastructures. A list of potential research challenges and open issues in this area is also provided, which can be used as useful resources to guide future research.Engineering and Physical Sciences Research Council (EPSRC

    Resource allocation model for sensor clouds under the sensing as a service paradigm

    Get PDF
    The Sensing as a Service is emerging as a new Internet of Things (IoT) business model for sensors and data sharing in the cloud. Under this paradigm, a resource allocation model for the assignment of both sensors and cloud resources to clients/applications is proposed. This model, contrarily to previous approaches, is adequate for emerging IoT Sensing as a Service business models supporting multi-sensing applications and mashups of Things in the cloud. A heuristic algorithm is also proposed having this model as a basis. Results show that the approach is able to incorporate strategies that lead to the allocation of fewer devices, while selecting the most adequate ones for application needs.FCT (Foundation for Science and Technology) from Portugal within CEOT (Center for Electronic, Optoelectronic and Telecommunications) UID/MULTI/00631/2019info:eu-repo/semantics/publishedVersio

    Edge computing platforms for Internet of Things

    Get PDF
    Internet of Things (IoT) has the potential to transform many domains of human activity, enabled by the collection of data from the physical world at a massive scale. As the projected growth of IoT data exceeds that of available network capacity, transferring it to centralized cloud data centers is infeasible. Edge computing aims to solve this problem by processing data at the edge of the network, enabling applications with specialized requirements that cloud computing cannot meet. The current market of platforms that support building IoT applications is very fragmented, with offerings available from hundreds of companies with no common architecture. This threatens the realization of IoT's potential: with more interoperability, a new class of applications that combine the collected data and use it in new ways could emerge. In this thesis, promising IoT platforms for edge computing are surveyed. First, an understanding of current challenges in the field is gained through studying the available literature on the topic. Second, IoT edge platforms having the most potential to meet these challenges are chosen and reviewed for their capabilities. Finally, the platforms are compared against each other, with a focus on their potential to meet the challenges learned in the first part. The work shows that AWS IoT for the edge and Microsoft Azure IoT Edge have mature feature sets. However, these platforms are tied to their respective cloud platforms, limiting interoperability and the possibility of switching providers. On the other hand, open source EdgeX Foundry and KubeEdge have the potential for more standardization and interoperability in IoT but are limited in functionality for building practical IoT applications

    Underpinning Quality Assurance: Identifying Core Testing Strategies for Multiple Layers of Internet-of-Things-Based Applications

    Get PDF
    The Internet of Things (IoT) constitutes a digitally integrated network of intelligent devices equipped with sensors, software, and communication capabilities, facilitating data exchange among a multitude of digital systems via the Internet. Despite its pivotal role in the software development life-cycle (SDLC) for ensuring software quality in terms of both functional and non-functional aspects, testing within this intricate software–hardware ecosystem has been somewhat overlooked. To address this, various testing techniques are applied for real-time minimization of failure rates in IoT applications. However, the execution of a comprehensive test suite for specific IoT software remains a complex undertaking. This paper proposes a holistic framework aimed at aiding quality assurance engineers in delineating essential testing methods across different testing levels within the IoT. This delineation is crucial for effective quality assurance, ultimately reducing failure rates in real-time scenarios. Furthermore, the paper offers a mapping of these identified tests to each layer within the layered framework of the IoT. This comprehensive approach seeks to enhance the reliability and performance of IoT-based applications

    The design and implementation of a smart-parking system for Helsinki Area

    Get PDF
    The strain on the parking infrastructure for the general public has significantly grown as a result of the ever rising number of vehicles geared by the rapid population growth in urban areas. Consequently, finding a vacant parking space has become quite a challenging task, especially at peak hours. Drivers have to cycle back and forth a number of times before they finally find where to park. This leads to increased fuel consumption, air pollution, and increased likelihood of causing accidents, to mention but a few. Paying for the parking is not straight forward either, as the ticket machines, on top of being located at a distance, in many times, they have several payment methods drivers must prepare for. A system therefore, that would allow drivers to check for the vacant parking places before driving to a busy city, takes care of the parking fee for exact time they have used, manages electronic parking permit, is the right direction towards toppling these difficulties. The main objective of this project was to design and implement a system that would provide parking occupancy estimation, parking fee payment method, parking permit management and parking analytics for the city authorities. The project had three phases. The first and the second phases used qualitative approaches to validate our hypotheses about parking shortcoming in Helsinki area and the recruitment of participants to the pilot of the project, respectively. The third phase involved the design, implementation and installation of the system. The other objective was to study the challenges a smart parking system would face at different stages of its life cycle. The objectives of the project were achieved and the considered assumption about the challenges associated with parking in a busy city were validated. A smart parking system will allow drivers to check for available parking spaces beforehand, they are able to pay for the parking fee, they can get electronic parking permits, and the city authority can get parking analytics for the city plannin

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application
    • …
    corecore