9,155 research outputs found

    Localization of algebras over coloured operads

    Get PDF
    We give sufficient conditions for homotopical localization functors to preserve algebras over coloured operads in monoidal model categories. Our approach encompasses a number of previous results about preservation of structures under localizations, such as loop spaces or infinite loop spaces, and provides new results of the same kind. For instance, under suitable assumptions, homotopical localizations preserve ring spectra (in the strict sense, not only up to homotopy), modules over ring spectra, and algebras over commutative ring spectra, as well as ring maps, module maps, and algebra maps. It is principally the treatment of module spectra and their maps that led us to the use of coloured operads (also called enriched multicategories) in this context.Comment: 34 page

    Compressive PCA for Low-Rank Matrices on Graphs

    Get PDF
    We introduce a novel framework for an approxi- mate recovery of data matrices which are low-rank on graphs, from sampled measurements. The rows and columns of such matrices belong to the span of the first few eigenvectors of the graphs constructed between their rows and columns. We leverage this property to recover the non-linear low-rank structures efficiently from sampled data measurements, with a low cost (linear in n). First, a Resrtricted Isometry Property (RIP) condition is introduced for efficient uniform sampling of the rows and columns of such matrices based on the cumulative coherence of graph eigenvectors. Secondly, a state-of-the-art fast low-rank recovery method is suggested for the sampled data. Finally, several efficient, parallel and parameter-free decoders are presented along with their theoretical analysis for decoding the low-rank and cluster indicators for the full data matrix. Thus, we overcome the computational limitations of the standard linear low-rank recovery methods for big datasets. Our method can also be seen as a major step towards efficient recovery of non- linear low-rank structures. For a matrix of size n X p, on a single core machine, our method gains a speed up of p2/kp^2/k over Robust Principal Component Analysis (RPCA), where k << p is the subspace dimension. Numerically, we can recover a low-rank matrix of size 10304 X 1000, 100 times faster than Robust PCA

    Parameterizable Views for Process Visualization

    Get PDF
    In large organizations different users or user groups usually have distinguished perspectives over business processes and related data. Personalized views on the managed processes are therefore needed. Existing BPM tools, however, do not provide adequate mechanisms for building and visualizing such views. Very often processes are displayed to users in the same way as drawn by the process designer. To tackle this inflexibility this paper presents an advanced approach for creating personalized process views based on well-defined, parameterizable view operations. Respective operations can be flexibly composed in order to reduce or aggregate process information in the desired way. Depending on the chosen parameterization of the applied view operations, in addition, different "quality levels" with more or less relaxed properties can be obtained for the resulting process views (e.g., regarding the correctness of the created process view scheme). This allows us to consider the specific needs of the different applications utilizing process views (e.g., process monitoring tools or process editors). Altogether, the realized view concept contributes to better deal with complex, long-running business processes with hundreds up to thousands of activities

    State space c-reductions for concurrent systems in rewriting logic

    Get PDF
    We present c-reductions, a state space reduction technique. The rough idea is to exploit some equivalence relation on states (possibly capturing system regularities) that preserves behavioral properties, and explore the induced quotient system. This is done by means of a canonizer function, which maps each state into a (non necessarily unique) canonical representative of its equivalence class. The approach exploits the expressiveness of rewriting logic and its realization in Maude to enjoy several advantages over similar approaches: exibility and simplicity in the definition of the reductions (supporting not only traditional symmetry reductions, but also name reuse and name abstraction); reasoning support for checking and proving correctness of the reductions; and automatization of the reduction infrastructure via Maude's meta-programming features. The approach has been validated over a set of representative case studies, exhibiting comparable results with respect to other tools

    Logics of Finite Hankel Rank

    Full text link
    We discuss the Feferman-Vaught Theorem in the setting of abstract model theory for finite structures. We look at sum-like and product-like binary operations on finite structures and their Hankel matrices. We show the connection between Hankel matrices and the Feferman-Vaught Theorem. The largest logic known to satisfy a Feferman-Vaught Theorem for product-like operations is CFOL, first order logic with modular counting quantifiers. For sum-like operations it is CMSOL, the corresponding monadic second order logic. We discuss whether there are maximal logics satisfying Feferman-Vaught Theorems for finite structures.Comment: Appeared in YuriFest 2015, held in honor of Yuri Gurevich's 75th birthday. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23534-9_1

    Fourier-Mukai and Nahm transforms for holomorphic triples on elliptic curves

    Get PDF
    We define a Fourier-Mukai transform for a triple consisting of two holomorphic vector bundles over an elliptic curve and a homomorphism between them. We prove that in some cases the transform preserves the natural stability condition for a triple. We also define a Nahm transform for solutions to natural gauge-theoretic equations on a triple -- vortices -- and explore some of its basic properties. Our approach combines direct methods with dimensional reduction techniques, relating triples over a curve with vector bundles over the product of the curve with the complex projective line.Comment: 39 pages, LaTeX2e, no figures; new proofs added, some arguments rewritten and typos corrected. Final version to appear in Journal of Geometry and Physic
    corecore