39 research outputs found

    Event-based neuromorphic stereo vision

    Full text link

    Event-driven stereo vision with orientation filters

    Get PDF
    The recently developed Dynamic Vision Sensors (DVS) sense dynamic visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, applying the matching algorithm to the events generated by the Gabor filters and not to those produced by the DVS. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction.European Union PRI-PIMCHI-2011-0768Ministerio de Economía y Competitividad TEC2009-10639-C04-01Ministerio de Economía y Competitividad TEC2012-37868-C04-01Junta de Andalucía TIC-609

    Neuromorphic Implementation of Orientation Hypercolumns

    Get PDF
    Neurons in the mammalian primary visual cortex are selective along multiple stimulus dimensions, including retinal position, spatial frequency, and orientation. Neurons tuned to different stimulus features but the same retinal position are grouped into retinotopic arrays of hypercolumns. This paper describes a neuromorphic implementation of orientation hypercolumns, which consists of a single silicon retina feeding multiple chips, each of which contains an array of neurons tuned to the same orientation and spatial frequency, but different retinal locations. All chips operate in continuous time, and communicate with each other using spikes transmitted by the address-event representation protocol. This system is modular in the sense that orientation coverage can be increased simply by adding more chips, and expandable in the sense that its output can be used to construct neurons tuned to other stimulus dimensions. We present measured results from the system, demonstrating neuronal selectivity along position, spatial frequency and orientation. We also demonstrate that the system supports recurrent feedback between neurons within one hypercolumn, even though they reside on different chips. The measured results from the system are in excellent concordance with theoretical predictions

    Algorithms for VLSI stereo vision circuits applied to autonomous robots

    Get PDF
    Since the inception of Robotics, visual information has been incorporated in order to allow the robots to perform tasks that require an interaction with their environment, particularly when it is a changing environment. Depth perception is a most useful information for a mobile robot to navigate in its environment and interact with its surroundings. Among the different methods capable of measuring the distance to the objects in the scene, stereo vision is the most advantageous for a small, mobile robot with limited energy and computational power. Stereoscopy implies a low power consumption because it uses passive sensors and it does not require the robot to move. Furthermore, it is more robust, because it does not require a complex optic system with moving elements. On the other hand, stereo vision is computationally intensive. Objects in the scene have to be detected and matched across images. Biological sensory systems are based on simple computational elements that process information in parallel and communicate among them. Analog VLSI chips are an ideal substrate to mimic the massive parallelism and collective computation present in biological nervous systems. For mobile robotics they have the added advantage of low power consumption and high computational power, thus freeing the CPU for other tasks. This dissertation discusses two stereoscopic methods that are based on simple, parallel cal- culations requiring communication only among neighboring processing units (local communication). Algorithms with these properties are easy to implement in analog VLSI and they are also very convenient for digital systems. The first algorithm is phase-based. Disparity, i.e., the spatial shift between left and right images, is recovered as a phase shift in the spatial-frequency domain. Gábor functions are used to recover the frequency spectrum of the image because of their optimum joint spatial and spatial-frequency properties. The Gábor-based algorithm is discussed and tested on a Khepera miniature mobile robot. Two further approximations are introduced to ease the analog VLSI and digital implementations. The second stereoscopic algorithm is difference-based. Disparity is recovered by a simple calculation using the image differences and their spatial derivatives. The algorithm is simulated on a digital system and an analog VLSI implementation is proposed and discussed. The thesis concludes with the description of some tools used in this research project. A stereo vision system has been developed for the Webots mobile robotics simulator, to simplify the testing of different stereo algorithms. Similarly, two stereo vision turrets have been built for the Khepera robot

    ANALOG SIGNAL PROCESSING SOLUTIONS AND DESIGN OF MEMRISTOR-CMOS ANALOG CO-PROCESSOR FOR ACCELERATION OF HIGH-PERFORMANCE COMPUTING APPLICATIONS

    Get PDF
    Emerging applications in the field of machine vision, deep learning and scientific simulation require high computational speed and are run on platforms that are size, weight and power constrained. With the transistor scaling coming to an end, existing digital hardware architectures will not be able to meet these ever-increasing demands. Analog computation with its rich set of primitives and inherent parallel architecture can be faster, more efficient and compact for some of these applications. The major contribution of this work is to show that analog processing can be a viable solution to this problem. This is demonstrated in the three parts of the dissertation. In the first part of the dissertation, we demonstrate that analog processing can be used to solve the problem of stereo correspondence. Novel modifications to the algorithms are proposed which improves the computational speed and makes them efficiently implementable in analog hardware. The analog domain implementation provides further speedup in computation and has lower power consumption than a digital implementation. In the second part of the dissertation, a prototype of an analog processor was developed using commercially available off-the-shelf components. The focus was on providing experimental results that demonstrate functionality and to show that the performance of the prototype for low-level and mid-level image processing tasks is equivalent to a digital implementation. To demonstrate improvement in speed and power consumption, an integrated circuit design of the analog processor was proposed, and it was shown that such an analog processor would be faster than state-of-the-art digital and other analog processors. In the third part of the dissertation, a memristor-CMOS analog co-processor that can perform floating point vector matrix multiplication (VMM) is proposed. VMM computation underlies some of the major applications. To demonstrate the working of the analog co-processor at a system level, a new tool called PSpice Systems Option is used. It is shown that the analog co-processor has a superior performance when compared to the projected performances of digital and analog processors. Using the new tool, various application simulations for image processing and solution to partial differential equations are performed on the co-processor model

    Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    Get PDF
    To appear in CVIUStudies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision can help in design of computer vision algorithms, it is a non-trivial exercise for a computer vision researcher to mine relevant information from biological vision literature as very few studies in biology are organised at a task level. In this paper we aim to bridge this gap by providing a computer vision task centric presentation of models primarily originating in biological vision studies. Not only do we revisit some of the main features of biological vision and discuss the foundations of existing computational studies modelling biological vision, but also we consider three classical computer vision tasks from a biological perspective: image sensing, segmentation and optical flow. Using this task-centric approach, we discuss well-known biological functional principles and compare them with approaches taken by computer vision. Based on this comparative analysis of computer and biological vision, we present some recent models in biological vision and highlight a few models that we think are promising for future investigations in computer vision. To this extent, this paper provides new insights and a starting point for investigators interested in the design of biology-based computer vision algorithms and pave a way for much needed interaction between the two communities leading to the development of synergistic models of artificial and biological vision

    Natural stimuli for mice: environment statistics and behavioral responses

    Get PDF

    A neurobiological and computational analysis of target discrimination in visual clutter by the insect visual system.

    Get PDF
    Some insects have the capability to detect and track small moving objects, often against cluttered moving backgrounds. Determining how this task is performed is an intriguing challenge, both from a physiological and computational perspective. Previous research has characterized higher-order neurons within the fly brain known as 'small target motion detectors‘ (STMD) that respond selectively to targets, even within complex moving surrounds. Interestingly, these cells still respond robustly when the velocity of the target is matched to the velocity of the background (i.e. with no relative motion cues). We performed intracellular recordings from intermediate-order neurons in the fly visual system (the medulla). These full-wave rectifying, transient cells (RTC) reveal independent adaptation to luminance changes of opposite signs (suggesting separate 'on‘ and 'off‘ channels) and fast adaptive temporal mechanisms (as seen in some previously described cell types). We show, via electrophysiological experiments, that the RTC is temporally responsive to rapidly changing stimuli and is well suited to serving an important function in a proposed target-detecting pathway. To model this target discrimination, we use high dynamic range (HDR) natural images to represent 'real-world‘ luminance values that serve as inputs to a biomimetic representation of photoreceptor processing. Adaptive spatiotemporal high-pass filtering (1st-order interneurons) shapes the transient 'edge-like‘ responses, useful for feature discrimination. Following this, a model for the RTC implements a nonlinear facilitation between the rapidly adapting, and independent polarity contrast channels, each with centre-surround antagonism. The recombination of the channels results in increased discrimination of small targets, of approximately the size of a single pixel, without the need for relative motion cues. This method of feature discrimination contrasts with traditional target and background motion-field computations. We show that our RTC-based target detection model is well matched to properties described for the higher-order STMD neurons, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear 'matched filter‘ to successfully detect many targets from the background. The model produces robust target discrimination across a biologically plausible range of target sizes and a range of velocities. We show that the model for small target motion detection is highly correlated to the velocity of the stimulus but not other background statistics, such as local brightness or local contrast, which normally influence target detection tasks. From an engineering perspective, we examine model elaborations for improved target discrimination via inhibitory interactions from correlation-type motion detectors, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observe that a changing optimal threshold is highly correlated to the value of observer ego-motion. We present an elaborated target detection model that allows for implementation of a static optimal threshold, by scaling the target discrimination mechanism with a model-derived velocity estimation of ego-motion. Finally, we investigate the physiological relevance of this target discrimination model. We show that via very subtle image manipulation of the visual stimulus, our model accurately predicts dramatic changes in observed electrophysiological responses from STMD neurons.Thesis (Ph.D.) - University of Adelaide, School of Molecular and Biomedical Science, 200
    corecore