5,536 research outputs found

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

    Full text link
    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify existing kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency and spectral filtering properties. Our theoretical results provide valuable insights in assessing the advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427

    Learning from User Interactions with Rankings: A Unification of the Field

    Get PDF
    Ranking systems form the basis for online search engines and recommendation services. They process large collections of items, for instance web pages or e-commerce products, and present the user with a small ordered selection. The goal of a ranking system is to help a user find the items they are looking for with the least amount of effort. Thus the rankings they produce should place the most relevant or preferred items at the top of the ranking. Learning to rank is a field within machine learning that covers methods which optimize ranking systems w.r.t. this goal. Traditional supervised learning to rank methods utilize expert-judgements to evaluate and learn, however, in many situations such judgements are impossible or infeasible to obtain. As a solution, methods have been introduced that perform learning to rank based on user clicks instead. The difficulty with clicks is that they are not only affected by user preferences, but also by what rankings were displayed. Therefore, these methods have to prevent being biased by other factors than user preference. This thesis concerns learning to rank methods based on user clicks and specifically aims to unify the different families of these methods. As a whole, the second part of this thesis proposes a framework that bridges many gaps between areas of online, counterfactual, and supervised learning to rank. It has taken approaches, previously considered independent, and unified them into a single methodology for widely applicable and effective learning to rank from user clicks.Comment: PhD Thesis of Harrie Oosterhuis defended at the University of Amsterdam on November 27th 202

    Kernel-based Inference of Functions over Graphs

    Get PDF
    The study of networks has witnessed an explosive growth over the past decades with several ground-breaking methods introduced. A particularly interesting -- and prevalent in several fields of study -- problem is that of inferring a function defined over the nodes of a network. This work presents a versatile kernel-based framework for tackling this inference problem that naturally subsumes and generalizes the reconstruction approaches put forth recently by the signal processing on graphs community. Both the static and the dynamic settings are considered along with effective modeling approaches for addressing real-world problems. The herein analytical discussion is complemented by a set of numerical examples, which showcase the effectiveness of the presented techniques, as well as their merits related to state-of-the-art methods.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018). This chapter surveys recent work on kernel-based inference of functions over graphs including arXiv:1612.03615 and arXiv:1605.07174 and arXiv:1711.0930
    corecore