6,940 research outputs found

    Different optimum notions for fuzzy functions and optimality conditions associated

    Get PDF
    Fuzzy numbers have been applied on decision and optimization problems in uncertain or imprecise environments. In these problems, the necessity to define optimal notions for decision-maker’s preferences as well as to prove necessary and sufficient optimality conditions for these optima are essential steps in the resolution process of the problem. The theoretical developments are illustrated and motivated with several numerical examples.The research in this paper has been supported by MTM2015-66185 (MINECO/FEDER, UE) and Fondecyt-Chile, Project 1151154

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    A comparative study of multiple-criteria decision-making methods under stochastic inputs

    Get PDF
    This paper presents an application and extension of multiple-criteria decision-making (MCDM) methods to account for stochastic input variables. More in particular, a comparative study is carried out among well-known and widely-applied methods in MCDM, when applied to the reference problem of the selection of wind turbine support structures for a given deployment location. Along with data from industrial experts, six deterministic MCDM methods are studied, so as to determine the best alternative among the available options, assessed against selected criteria with a view toward assigning confidence levels to each option. Following an overview of the literature around MCDM problems, the best practice implementation of each method is presented aiming to assist stakeholders and decision-makers to support decisions in real-world applications, where many and often conflicting criteria are present within uncertain environments. The outcomes of this research highlight that more sophisticated methods, such as technique for the order of preference by similarity to the ideal solution (TOPSIS) and Preference Ranking Organization method for enrichment evaluation (PROMETHEE), better predict the optimum design alternative

    Measuring Technical Efficiency of Dairy Farms with Imprecise Data: A Fuzzy Data Envelopment Analysis Approach

    Get PDF
    This article integrates fuzzy set theory in Data Envelopment Analysis (DEA) framework to compute technical efficiency scores when input and output data are imprecise. The underlying assumption in convectional DEA is that inputs and outputs data are measured with precision. However, production agriculture takes place in an uncertain environment and, in some situations, input and output data may be imprecise. We present an approach of measuring efficiency when data is known to lie within specified intervals and empirically illustrate this approach using a group of 34 dairy producers in Pennsylvania. Compared to the convectional DEA scores that are point estimates, the computed fuzzy efficiency scores allow the decision maker to trace the performance of a decision-making unit at different possibility levels.fuzzy set theory, Data Envelopment Analysis, membership function, α-cut level, technical efficiency, Farm Management, Production Economics, Productivity Analysis, Research Methods/ Statistical Methods, Risk and Uncertainty, D24, Q12, C02, C44, C61,

    An interval-valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives

    Get PDF
    This article proposes a framework to handle multiattribute group decision making problems with incomplete pairwise comparison preference over decision alternatives where qualitative and quantitative attribute values are furnished as linguistic variables and crisp numbers, respectively. Attribute assessments are then converted to interval-valued intuitionistic fuzzy numbers (IVIFNs) to characterize fuzziness and uncertainty in the evaluation process. Group consistency and inconsistency indices are introduced for incomplete pairwise comparison preference relations on alternatives provided by the decision-makers (DMs). By minimizing the group inconsistency index under certain constraints, an auxiliary linear programming model is developed to obtain unified attribute weights and an interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS). Attribute weights are subsequently employed to calculate distances between alternatives and the IVIFPIS for ranking alternatives. An illustrative example is provided to demonstrate the applicability and effectiveness of this method

    An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights

    Get PDF
    This article proposes an approach to multiattribute decision making with incomplete attribute weight information where individual assessments are provided as interval-valued intuitionistic fuzzy numbers (IVIFNs). By employing a series of optimization models, the proposed approach derives a linear program for determining attribute weights. The weights are subsequently used to synthesize individual IVIFN assessments into an aggregated IVIFN value for each alternative. In order to rank alternatives based on their aggregated IVIFN values, a novel method is developed for comparing two IVIFNs by introducing two new functions: the membership uncertainty index and the hesitation uncertainty index. An illustrative investment decision problem is employed to demonstrate how to apply the proposed procedure and comparative studies are conducted to show its overall consistency with existing approaches

    A general unified framework for pairwise comparison matrices in multicriterial methods

    Get PDF
    In a Multicriteria Decision Making context, a pairwise comparison matrix A=(aij)A=(a_{ij}) is a helpful tool to determine the weighted ranking on a set XX of alternatives or criteria. The entry aija_{ij} of the matrix can assume different meanings: aija_{ij} can be a preference ratio (multiplicative case) or a preference difference (additive case) or aija_{ij} belongs to [0,1][0,1] and measures the distance from the indifference that is expressed by 0.5 (fuzzy case). For the multiplicative case, a consistency index for the matrix AA has been provided by T.L. Saaty in terms of maximum eigenvalue. We consider pairwise comparison matrices over an abelian linearly ordered group and, in this way, we provide a general framework including the mentioned cases. By introducing a more general notion of metric, we provide a consistency index that has a natural meaning and it is easy to compute in the additive and multiplicative cases; in the other cases, it can be computed easily starting from a suitable additive or multiplicative matrix

    A perspective on the extension of stochastic orderings to fuzzy random variables

    Get PDF
    International audienceIn this paper we study how to make joint extensions of stochastic orderings and interval orderings so as to extend methods for comparing random variables, from the point of view of their respective location or magnitude, to fuzzy random variables. The main idea is that the way fuzzy random variables are interpreted affects the choice of the comparison methods. We distinguish three views of fuzzy random variables, according to which various comparison methods seem to make sense. This paper offers an approach toward a systematic classification of combinations of stochastic and interval or fuzzy interval comparison methods
    corecore