8,981 research outputs found

    Human factors in space telepresence

    Get PDF
    The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing

    Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    Get PDF
    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 1: Telepresence technology base development

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program is presented, leading to an operational telepresence servicer

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    Displays for telemanipulation

    Get PDF
    Visual displays drive the human operator's highest bandwidth sensory input channel. Thus, no telemanipulation system is adequate which does not make extensive use of visual displays. Although an important use of visual displays is the presentation of a televised image of the work scene, visual displays are examined for presentation of nonvisual information (forces and torques) for simulation and planning, and for management and control of the large numbers of subsystems which make up a modern telemanipulation system

    Sensory Manipulation as a Countermeasure to Robot Teleoperation Delays: System and Evidence

    Full text link
    In the field of robotics, robot teleoperation for remote or hazardous environments has become increasingly vital. A major challenge is the lag between command and action, negatively affecting operator awareness, performance, and mental strain. Even with advanced technology, mitigating these delays, especially in long-distance operations, remains challenging. Current solutions largely focus on machine-based adjustments. Yet, there's a gap in using human perceptions to improve the teleoperation experience. This paper presents a unique method of sensory manipulation to help humans adapt to such delays. Drawing from motor learning principles, it suggests that modifying sensory stimuli can lessen the perception of these delays. Instead of introducing new skills, the approach uses existing motor coordination knowledge. The aim is to minimize the need for extensive training or complex automation. A study with 41 participants explored the effects of altered haptic cues in delayed teleoperations. These cues were sourced from advanced physics engines and robot sensors. Results highlighted benefits like reduced task time and improved perceptions of visual delays. Real-time haptic feedback significantly contributed to reduced mental strain and increased confidence. This research emphasizes human adaptation as a key element in robot teleoperation, advocating for improved teleoperation efficiency via swift human adaptation, rather than solely optimizing robots for delay adjustment.Comment: Submitted to Scientific Report

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 Second Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Delay occurs with earth-based teleoperation in space and with surface-based teleoperation with untethered submersibles when acoustic communication links are involved. The delay in obtaining position and force feedback from remote slave arms makes teleoperation extremely difficult leading to very low productivity. We have combined computer graphics with manipulator programming to provide a solution to the problem. A teleoperator master arm is interfaced to a graphics based simulator of the remote environment. The system is then coupled with a robot manipulator at the remote, delayed site. The operator\u27s actions are monitored to provide both kinesthetic and visual feedback and to generate symbolic motion commands to the remote slave. The slave robot then executes these symbolic commands delayed in time. While much of a task proceeds error free, when an error does occur, the slave system transmits data back to the master environment which is then reset to the error state from which the operator continues the task

    Space applications of Automation, Robotics And Machine Intelligence Systems (ARAMIS). Volume 3, phase 2: Executive summary

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program leading to an operational telepresence servicer is presented

    Manipulating flexible parts using a teleoperated system with time delay: An experiment

    Get PDF
    This paper reports experiments involving the handling of flexible parts (e.g. wires) when using a teleoperated system with time delay. The task is principally a peg-in-hole task involving the wrapping of a wire around two posts on the task-board. It is difficult to estimate the effects of the flexible parts; therefore, on-line teleoperation is indispensable for this class of unpredictable task. We first propose a teleoperation system based on the predictive image display, then describe an experimental teleoperation testbed with a four second transmission time delay. Finally, we report on wire handling operations that were performed to evaluate the performance of this system. Those experiments will contribute to future advanced experiments for the MITI ETS-7 mission

    Study to design and develop remote manipulator system

    Get PDF
    Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance
    • …
    corecore