89 research outputs found

    Autonomous Robots for Active Removal of Orbital Debris

    Full text link
    This paper presents a vision guidance and control method for autonomous robotic capture and stabilization of orbital objects in a time-critical manner. The method takes into account various operational and physical constraints, including ensuring a smooth capture, handling line-of-sight (LOS) obstructions of the target, and staying within the acceleration, force, and torque limits of the robot. Our approach involves the development of an optimal control framework for an eye-to-hand visual servoing method, which integrates two sequential sub-maneuvers: a pre-capturing maneuver and a post-capturing maneuver, aimed at achieving the shortest possible capture time. Integrating both control strategies enables a seamless transition between them, allowing for real-time switching to the appropriate control system. Moreover, both controllers are adaptively tuned through vision feedback to account for the unknown dynamics of the target. The integrated estimation and control architecture also facilitates fault detection and recovery of the visual feedback in situations where the feedback is temporarily obstructed. The experimental results demonstrate the successful execution of pre- and post-capturing operations on a tumbling and drifting target, despite multiple operational constraints

    Automated Rendezvous & Docking Using 3D Vision

    Full text link
    The robustness and accuracy of a vision system for motion estimation of a tumbling target satellite are enhanced by an adaptive Kalman filter. This allows a vision-guided robot to complete the grasping of the target even if occlusion occurs during the operation. A complete dynamics model, including aspects of orbital mechanics, is incorporated for accurate estimation. Based on the model, an adaptive Kalman filter is developed that estimates not only the system states but also all the model parameters such as the inertia ratio, center-of-mass, and the rotation of the principal axes of the target satellite. An experiment is conducted by using a robotic arm to move a satellite mockup according to orbital mechanics while the satellite pose is measured by a laser camera system. The measurements are sent to the Kalman filter, which, in turn, drives another robotic arm to grasp the target. The results demonstrate successful grasping even if the vision system is blocked for several seconds

    Modeling & control of a space robot for active debris removal

    Get PDF
    Space access and satellites lifespan are increasingly threatened by the great amount of debris in Low Earth Orbits (LEO). Among the many solutions proposed in the literature so far, the emphasis is put here on a robotic arm mounted on a satellite to capture massive debris, such as dead satellites or launch vehicle upper stages. The modeling and control of such systems are investigated throughout the paper. Dynamic models rely on an adapted Newton-Euler algorithm, and control algorithms are based on the recent structured H infinity method. The main goal is to efficiently track a target point on the debris while using simple PD-like controllers to reduce computational burden. The structured H infinity framework proves to be a suitable tool to design a reduced-order robust controller that catches up with external disturbances and is simultaneously compatible with current space processors capacities

    Robotic Manipulation and Capture in Space: A Survey

    Get PDF
    Space exploration and exploitation depend on the development of on-orbit robotic capabilities for tasks such as servicing of satellites, removing of orbital debris, or construction and maintenance of orbital assets. Manipulation and capture of objects on-orbit are key enablers for these capabilities. This survey addresses fundamental aspects of manipulation and capture, such as the dynamics of space manipulator systems (SMS), i.e., satellites equipped with manipulators, the contact dynamics between manipulator grippers/payloads and targets, and the methods for identifying properties of SMSs and their targets. Also, it presents recent work of sensing pose and system states, of motion planning for capturing a target, and of feedback control methods for SMS during motion or interaction tasks. Finally, the paper reviews major ground testing testbeds for capture operations, and several notable missions and technologies developed for capture of targets on-orbit

    Hybrid Simulator for Space Docking and Robotic Proximity Operations

    Full text link
    In this work, we present a hybrid simulator for space docking and robotic proximity operations methodology. This methodology also allows for the emulation of a target robot operating in a complex environment by using an actual robot. The emulation scheme aims to replicate the dynamic behavior of the target robot interacting with the environment, without dealing with a complex calculation of the contact dynamics. This method forms a basis for the task verification of a flexible space robot. The actual emulating robot is structurally rigid, while the target robot can represent any class of robots, e.g., flexible, redundant, or space robots. Although the emulating robot is not dynamically equivalent to the target robot, the dynamical similarity can be achieved by using a control law developed herein. The effect of disturbances and actuator dynamics on the fidelity and the contact stability of the robot emulation is thoroughly analyzed

    Six-DOF Spacecraft Dynamics Simulator For Testing Translation and Attitude Control

    Full text link
    This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of externally applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g laboratory environment. The controller consisting of motion feedback and force/moment feedback adjusts the motion of the test spacecraft so as to match that of the flight spacecraft, even if the latter has flexible appendages (such as solar panels) and the former is rigid. The stability of the overall system is analytically investigated, and the results show that the system remains stable provided that the inertial properties of two spacecraft are different and that an upperbound on the norm of the inertia ratio of the payload to manipulator is respected. Important practical issues such as calibration and sensitivity analysis to sensor noise and quantization are also presented

    Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    Get PDF
    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations

    Autonomous Visual Servo Robotic Capture of Non-cooperative Target

    Get PDF
    This doctoral research develops and validates experimentally a vision-based control scheme for the autonomous capture of a non-cooperative target by robotic manipulators for active space debris removal and on-orbit servicing. It is focused on the final capture stage by robotic manipulators after the orbital rendezvous and proximity maneuver being completed. Two challenges have been identified and investigated in this stage: the dynamic estimation of the non-cooperative target and the autonomous visual servo robotic control. First, an integrated algorithm of photogrammetry and extended Kalman filter is proposed for the dynamic estimation of the non-cooperative target because it is unknown in advance. To improve the stability and precision of the algorithm, the extended Kalman filter is enhanced by dynamically correcting the distribution of the process noise of the filter. Second, the concept of incremental kinematic control is proposed to avoid the multiple solutions in solving the inverse kinematics of robotic manipulators. The proposed target motion estimation and visual servo control algorithms are validated experimentally by a custom built visual servo manipulator-target system. Electronic hardware for the robotic manipulator and computer software for the visual servo are custom designed and developed. The experimental results demonstrate the effectiveness and advantages of the proposed vision-based robotic control for the autonomous capture of a non-cooperative target. Furthermore, a preliminary study is conducted for future extension of the robotic control with consideration of flexible joints

    Modeling and Control of a Flexible Space Robot to Capture a Tumbling Debris

    Get PDF
    RÉSUMÉ La conquête spatiale des 60 dernières années a généré une grande quantité d’objets à la dérive sur les orbites terrestres. Leur nombre grandissant constitue un danger omniprésent pour l’exploitation des satellites, et requiert aujourd’hui une intervention humaine pour réduire les risques de collision. En effet, l’estimation de leur croissance sur un horizon de 200 ans, connue sous le nom de “syndrôme de Kessler”, montre que l’accès à l’Espace sera grandement menacé si aucune mesure n’est prise pour endiguer cette prolifération. Le scientifique J.-C. Liou de la National Aeronautics and Space Administration (NASA) a montré que la tendance actuelle pourrait être stabilisée, voire inversée, si au moins cinq débris massifs étaient désorbités par an, tels que des satellites en fin de vie ou des étages supérieurs de lanceur. Parmi les nombreux concepts proposés pour cette mission, la robotique s’est imposée comme une des solutions les plus prometteuses grâce aux retours d’expérience des 30 dernières années. La Station Spatiale Internationale (ISS) possède déjà plusieurs bras robotiques opérationnels, et de nombreuses missions ont démontré le potentiel d’un tel système embarqué sur un satellite. Pour deux d’entre elles, des étapes fondamentales ont été validées pour le service en orbite,et s’avèrent être similaires aux problématiques de la désorbitation des débris. Cette thèse se concentre sur l’étape de capture d’un débris en rotation par un bras robotique ayant des segments flexibles. Cette phase comprend la planification de trajectoire et le contrôle du robot spatial, afin de saisir le point cible du débris de la façon la plus délicate possible. La validation des technologies nécessaires à un tel projet est quasiment impossible sur Terre, et requiert des moyens démesurés pour effectuer des essais en orbite. Par conséquent, la modélisation et la simulation de systèmes multi-corps flexibles est traitée en détails, et constitue une forte contribution de la thèse. À l’aide de ces modèles, une validation mixte est proposée par des essais expérimentaux, en reproduisant la cinématique en orbite par des manipulateurs industriels contrôlés par une simulation en temps réel. En résumé, cette thèse est construite autour des trois domaines suivants : la modélisation des robots spatiaux, le design de lois de contrôle, et leur validation sur un cas test. Dans un premier temps, la modélisation de robots spatiaux en condition d’apesanteur est développée pour une forme “en étoile”.----------ABSTRACT After 60 years of intensive satellite launches, the number of drifting objects in Earth orbits is reaching a shifting point, where human intervention is becoming necessary to reduce the threat of collision. Indeed, a 200 year forecast, known as the “Kessler syndrome”, states that space access will be greatly compromised if nothing is done to address the proliferation of these debris. Scientist J.-C. Liou from the National Aeronautics and Space Administration (NASA) has shown that the current trend could be reversed if at least five massive objects, such as dead satellites or rocket upper stages, were de-orbited each year. Among the various technical concepts considered for debris removal, robotics has emerged, over the last 30 years, as one of the most promising solutions. The International Space Station (ISS) already possesses fully operational robotic arms, and other missions have explored the potential of a manipulator embedded onto a satellite. During two of the latter, key capabilities have been demonstrated for on-orbit servicing, and prove to be equally useful for the purpose of debris removal. This thesis focuses on the close range capture of a tumbling debris by a robotic arm with light-weight flexible segments. This phase includes the motion planning and the control of a space robot, in order to smoothly catch a target point on the debris. The validation of such technologies is almost impossible on Earth and leads to prohibitive costs when performed on orbit. Therefore, the modeling and simulation of flexible multi-body systems has been investigated thoroughly, and is likewise a strong contribution of the thesis. Based on these models, an experimental validation is proposed by reproducing the on-orbit kinematics on a test bench made up of two industrial manipulators and driven by a real-time dynamic simulation. In a nutshell, the thesis is built around three main parts: the modeling of a space robot, the design of control laws, and their validation on a test case. The first part is dedicated to the flexible modeling of a space robot in conditions of weightlessness. A “star-shaped” multi-body system is considered, meaning that the rigid base carries various flexible appendages and robotic arms, assumed to be open mechanical chains only. The classic Newton-Euler and Lagrangian algorithms are brought together to account for the flexibility and to compute the dynamics in a numerically efficient way. The modeling step starts with the rigid fixed-base manipulators in order to introduce the notations, then, détails the flexible ones, and ends with the moving-base system to represent the space robots

    On Blocking Collisions between People, Objects and other Robots

    Full text link
    Intentional or unintentional contacts are bound to occur increasingly more often due to the deployment of autonomous systems in human environments. In this paper, we devise methods to computationally predict imminent collisions between objects, robots and people, and use an upper-body humanoid robot to block them if they are likely to happen. We employ statistical methods for effective collision prediction followed by sensor-based trajectory generation and real-time control to attempt to stop the likely collisions using the most favorable part of the blocking robot. We thoroughly investigate collisions in various types of experimental setups involving objects, robots, and people. Overall, the main contribution of this paper is to devise sensor-based prediction, trajectory generation and control processes for highly articulated robots to prevent collisions against people, and conduct numerous experiments to validate this approach
    • …
    corecore