5,491 research outputs found

    Emergence of Self-Organized Symbol-Based Communication \ud in Artificial Creatures

    Get PDF
    In this paper, we describe a digital scenario where we simulated the emergence of self-organized symbol-based communication among artificial creatures inhabiting a \ud virtual world of unpredictable predatory events. In our experiment, creatures are autonomous agents that learn symbolic relations in an unsupervised manner, with no explicit feedback, and are able to engage in dynamical and autonomous communicative interactions with other creatures, even simultaneously. In order to synthesize a behavioral ecology and infer the minimum organizational constraints for the design of our creatures, \ud we examined the well-studied case of communication in vervet monkeys. Our results show that the creatures, assuming the role of sign users and learners, behave collectively as a complex adaptive system, where self-organized communicative interactions play a \ud major role in the emergence of symbol-based communication. We also strive in this paper for a careful use of the theoretical concepts involved, including the concepts of symbol and emergence, and we make use of a multi-level model for explaining the emergence of symbols in semiotic systems as a basis for the interpretation of inter-level relationships in the semiotic processes we are studying

    Predator Effects in Predator-Free Space: The Remote Effects of Predators on Prey

    Get PDF
    Predators can have remote effects on prey populations that are connected by migration (i.e. prey metapopulations) because predator-mediated changes in prey behavior and abundance effectively transmit the impact of predators into predator-free prey populations. Behavioral changes in prey that might give rise to remote effects are altered rates of migration or activity in the presence of predation risk (called non-consumptive effects, fear- or μ-driven effects, and risk effects). Changes in prey abundance that may result in remote effects arise from changes in prey density due to direct predation (i.e. consumptive effects, also called N-driven effects and predation effects). Remote effects provide a different perspective on both predator-prey interactions and spatial subsidies, illustrating how the interplay among space, time, behavior, and consumption generates emergent spatial dynamics in places where we might not expect them. We describe how strong remote effects of predators may essentially generate “remote control” over the dynamics of local populations, alter the persistence of metapopulations, shift the importance of particular paradigms of metacommunity structure, alter spatial subsidies, and affect evolutionary dynamics. We suggest how experiments might document remote effects and predict that remote effects will be an important component of prey dynamics under several common scenarios: when predators induce large changes in prey dispersal behavior, when predators dramatically reduce the number of prey available to disperse, when prey movement dynamics occur over greater distances or shorter timescales than predator movement, and when prey abundance is not already limited by competitors or conspecifics

    Coevolution of Camouflage

    Full text link
    Camouflage in nature seems to arise from competition between predator and prey. To survive, predators must find prey, and prey must avoid being found. This work simulates an abstract model of that adversarial relationship. It looks at crypsis through evolving prey camouflage patterns (as color textures) in competition with evolving predator vision. During their "lifetime" predators learn to better locate camouflaged prey. The environment for this 2D simulation is provided by a set of photographs, typically of natural scenes. This model is based on two evolving populations, one of prey and another of predators. Mutual conflict between these populations can produce both effective prey camouflage and predators skilled at "breaking" camouflage. The result is an open source artificial life model to help study camouflage in nature, and the perceptual phenomenon of camouflage more generally.Comment: 16 pages, 20 figure

    Modeling the Phenomenon of Xenophobia in Africa

    Get PDF
    In this study, we applied the principle of a competitive predator-prey system to propose a prey-predator-like model of xenophobia in Africa. The boundedness of the solution, the existence and stability of equilibrium states of the xenophobic model are discussed accordingly. As a special case, the coexistence state was found to be locally and globally stable based on the parametric conditions of effective group defense and anti-xenophobic policy implementation. The system was further analyzed by Sotomayor’s theory to show that each equilibrium point bifurcates transcritically. However, numerical proof showed period-doubling bifurcation, which makes the xenophobic situation more chaotic in Africa. Further numerical simulations support the analytical results with the view that tolerance, group defense and anti-xenophobic policies are critical parameters for the coexistence of foreigners and xenophobes

    Oscillatory dynamics in a model of vascular tumour growth -- implications for chemotherapy

    Get PDF
    Background\ud \ud Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.\ud Results\ud \ud By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls.\ud Conclusions\ud \ud We have developed a mathematical model of vascular tumour growth formulated as a system of partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to chemotherapy.\ud Reviewers\ud \ud This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel

    Predation pressure shapes brain anatomy in the wild

    Get PDF
    The predation pressure data were collected by AEM and AED as part of an ERC-funded project (BioTIME 250189), AEM was supported by the Royal Society, AK and NK were supported by the Knut and Alice Wallenberg Foundation (KAW2013.0072 to NK).There is remarkable diversity in brain anatomy among vertebrates and evidence is accumulating that predatory interactions are crucially important for this diversity. To test this hypothesis, we collected female guppies (Poecilia reticulata) from 16 wild populations and related their brain anatomy to several aspects of predation pressure in this ecosystem, such as the biomass of the four major predators of guppies (one prawn and three fish species), and predator diversity (number of predatory fish species in each site). We found that populations from localities with higher prawn biomass had relatively larger telencephalon size as well as larger brains. Optic tectum size was positively associated with one of the fish predator’s biomass and with overall predator diversity. However, both olfactory bulb and hypothalamus size were negatively associated with the biomass of another of the fish predators. Hence, while fish predator occurrence is associated with variation in brain anatomy, prawn occurrence is associated with variation in brain size. Our results suggest that cognitive challenges posed by local differences in predator communities may lead to changes in prey brain anatomy in the wild.Publisher PDFPeer reviewe

    A Sensory-Driven Trade-Off between Coordinated Motion in Social Prey and a Predator's Visual Confusion.

    Get PDF
    Social animals are capable of enhancing their awareness by paying attention to their neighbors, and prey found in groups can also confuse their predators. Both sides of these sensory benefits have long been appreciated, yet less is known of how the perception of events from the perspectives of both prey and predator can interact to influence their encounters. Here we examined how a visual sensory mechanism impacts the collective motion of prey and, subsequently, how their resulting movements influenced predator confusion and capture ability. We presented virtual prey to human players in a targeting game and measured the speed and accuracy with which participants caught designated prey. As prey paid more attention to neighbor movements their collective coordination increased, yet increases in prey coordination were positively associated with increases in the speed and accuracy of attacks. However, while attack speed was unaffected by the initial state of the prey, accuracy dropped significantly if the prey were already organized at the start of the attack, rather than in the process of self-organizing. By repeating attack scenarios and masking the targeted prey's neighbors we were able to visually isolate them and conclusively demonstrate how visual confusion impacted capture ability. Delays in capture caused by decreased coordination amongst the prey depended upon the collection motion of neighboring prey, while it was primarily the motion of the targets themselves that determined capture accuracy. Interestingly, while a complete loss of coordination in the prey (e.g., a flash expansion) caused the greatest delay in capture, such behavior had little effect on capture accuracy. Lastly, while increases in collective coordination in prey enhanced personal risk, traveling in coordinated groups was still better than appearing alone. These findings demonstrate a trade-off between the sensory mechanisms that can enhance the collective properties that emerge in social animals and the individual group member's predation risk during an attack

    Costs and benefits of Daphnia antipredator behavior and consequences on community stability

    Get PDF
    Predator-prey interactions are an important factor in energy transfer through food webs. To estimate effects of altered energy flow caused by costs and benefits of antipredator defenses and to study their implications for community stability, I used the planktivorous fish - Chaoborus - Daphnia system. In the laboratory, I found that clonal variance of Daphnia antipredator defenses was high, and that behavioral, morphological, and life-history defenses were uncoupled. To estimate the costs and benefits of antipredator defenses in the presence of predators, I conducted lake-enclosure (1-m diameter x 7-m deep) experiments in the field, taking advantage of two features of the antipredator defense: (1) Daphnia exposed to only the predator-chemical should incur the cost of the defense, but not the cost of predation, and (2) antipredator response varies among Daphnia clones. Controls had no predators, \u27real\u27 predation exposed the clones to predators and in \u27ghost\u27 predation, predators were sequestered in a mesh tube away from Daphnia. I exposed a Daphnia clone responsive and a clone non-responsive to each predator, and I measured population growth (r) of Daphnia populations. Cost of predation was calculated as [responsive clone (r) in control treatments - responsive clone (r) in the ghost predation treatments]. Benefit was calculated as [responsive clone (r) - non-responsive clone (r) in the real predation treatments]. I found that, due to the antipredator defenses, Daphnia population growth was reduced by 32 % in the presence of Chaoborus predators. The benefit of the defense, however, was 68 % increased population growth. Defenses to fish predators caused a cost of 16 % and benefits of 35 %. In both cases, benefit of antipredator defense did exceed cost, but cost was nevertheless substantial. I also found the fish predator to benefit from the antipredator behavior of its prey. Planktivorous fish lost weight (-0.375 g) when preying on the non-responsive clone and gained weight (+0.225 g) in presence of the responsive clone, which was able to sustain a higher population density. Prey stability was highest in predation treatments with the responsive clone. In control treatments, Daphnia showed typical boom and bust cycles. A population model yielded similar results
    corecore