2,621 research outputs found

    Detection Mechanism in SNSPD: Numerical Results of a Conceptually Simple, Yet Powerful Detection Model

    Full text link
    In a recent publication we have proposed a numerical model that describes the detection process of optical photons in superconducting nanowire single-photon detectors (SNSPD). Here, we review this model and present a significant improvement that allows us to calculate more accurate current distributions for the inhomogeneous quasi-particle densities occurring after photon absorption. With this new algorithm we explore the detector response in standard NbN SNSPD for photons absorbed off-center and for 2-photon processes. We also discuss the outstanding performance of SNSPD based on WSi. Our numerical results indicate a different detection mechanism in WSi than in NbN or similar materials.Comment: Presented at ASC 2014 (invited) and submitted to IEEE Transaction on Applied Superconductivity (Special Issue

    A recursive-faulting model of distributed damage in confined brittle materials

    Get PDF
    We develop a model of distributed damage in brittle materials deforming in triaxial compression based on the explicit construction of special microstructures obtained by recursive faulting. The model aims to predict the effective or macroscopic behavior of the material from its elastic and fracture properties; and to predict the microstructures underlying the microscopic behavior. The model accounts for the elasticity of the matrix, fault nucleation and the cohesive and frictional behavior of the faults. We analyze the resulting quasistatic boundary value problem and determine the relaxation of the potential energy, which describes the macroscopic material behavior averaged over all possible fine-scale structures. Finally, we present numerical calculations of the dynamic multi-axial compression experiments on sintered aluminum nitride of Chen and Ravichandran [1994. Dynamic compressive behavior of ceramics under lateral confinement. J. Phys. IV 4, 177–182; 1996a. Static and dynamic compressive behavior of aluminum nitride under moderate confinement. J. Am. Soc. Ceramics 79(3), 579–584; 1996b. An experimental technique for imposing dynamic multiaxial compression with mechanical confinement. Exp. Mech. 36(2), 155–158; 2000. Failure mode transition in ceramics under dynamic multiaxial compression. Int. J. Fracture 101, 141–159]. The model correctly predicts the general trends regarding the observed damage patterns; and the brittle-to-ductile transition resulting under increasing confinement

    Topology-based goodness-of-fit tests for sliced spatial data

    Get PDF
    In materials science and many other application domains, 3D information can often only be obtained by extrapolating from 2D slices. In topological data analysis, persistence vineyards have emerged as a powerful tool to take into account topological features stretching over several slices. It is illustrated how persistence vineyards can be used to design rigorous statistical hypothesis tests for 3D microstructure models based on data from 2D slices. More precisely, by establishing the asymptotic normality of suitable longitudinal and cross-sectional summary statistics, goodness-of-fit tests that become asymptotically exact in large sampling windows are devised. The testing methodology is illustrated through a detailed simulation study and a prototypical example from materials science is provided

    Factors affecting the heat transfer during the dip testing of potential third generation advanced high strength steels

    Get PDF
    A dip tester was designed and built at Missouri University of Science and Technology to test the effects of the primary alloying elements (Mn, Si, and Al) of Fe-Mn-Al-Si-C type 3rd generation advanced high strength steel (AHSS) alloys, dipping superheat, and dipping speed on the heat transfer during rapid solidification. The difficulties associated with casting 3rd generation AHSS were compiled as well to serve as a best-practices guide. An extensive list of potential 3rd generation AHSS alloys was developed and tested, and the effects of various dip testing parameters were examined. Manganese was found to increase the heat flux by coating the copper blocks with MnO, reducing the air gap and improving the thermal conduction. Aluminum increased the heat flux by shifting the solidification path through multiple phase fields and thereby increasing the amount of enthalpy (heat) rejected upon solidification. The consequences however, were an increase in the secondary dendrite arm spacings and segregation within the microstructure resulting from a longer freezing range. Silicon was found to have no effect on the heat flux. It provided no substantial shift of the solidification path, nor did it increase the heat flux by improving the contact between the melt and copper blocks. Increasing the dipping superheat increased the heat flux by decreasing the melt viscosity and improving the wettability between the melt and copper blocks. An increase in the superheat also increased the driving force for heat transfer from the solidifying sample to the copper blocks --Abstract, page iii

    Phase Stability and Segregation in Alloy 22 Base Metal and Weldments

    Full text link
    The current design of the waste disposal containers relies heavily on encasement in a multi-layered container, featuring a corrosion barrier of Alloy 22, a Ni-Cr-Mo-W based alloy with excellent corrosion resistance over a wide range of conditions. The fundamental concern from the perspective of the Yucca Mountain Project, however, is the inherent uncertainty in the (very) long-term stability of the base metal and welds. Should the properties of the selected materials change over the long service life of the waste packages, it is conceivable that the desired performance characteristics (such as corrosion reistance) will become compromised, leading to premature failure of the system. To address this, we will study the phase stability and solute segregation characteristics of Alloy 22 base metal and welds. A better understanding of the underlying microstructural evolution tendencies, and their connections with corrosion behavior will (in turn) produce a higher confidence in the extrapolated behavior of the container materials over time periods that are not feasibly tested in a laboratory. Additionally, the knowledge gained here may potentially lead to cost savings through development of safe and realistic design constraints and model assumptions throughout the entire disposal system

    Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux

    Full text link
    We studied the effect of the external magnetic field and photon flux on timing jitter in photon detection by straight superconducting NbN nanowires. At two wavelengths 800 and 1560 nm, statistical distribution in the appearance time of the photon count exhibits Gaussian shape at small times and exponential tail at large times. The characteristic exponential time is larger for photons with smaller energy and increases with external magnetic field while variations in the Gaussian part of the distribution are less pronounced. Increasing photon flux drives the nanowire from quantum detection mode to the bolometric mode that averages out fluctuations of the total number of nonequilibrium electrons created by the photon and drastically reduces jitter. The difference between Gaussian parts of distributions for these two modes provides the measure for the electron-number fluctuations. Corresponding standard deviation increases with the photon energy. We show that the two-dimensional hot-spot detection model explains qualitatively the effect of magnetic field

    Low cost fabrication development for oxide dispersion strengthened alloy vanes

    Get PDF
    Viable processes were developed for secondary working of oxide dispersion strengthened (ODS) alloys to near-net shapes (NNS) for aircraft turbine vanes. These processes were shown capable of producing required microstructure and properties for vane applications. Material cost savings of 40 to 50% are projected for the NNS process over the current procedures which involve machining from rectangular bar. Additional machining cost savings are projected. Of three secondary working processes evaluated, directional forging and plate bending were determined to be viable NNS processes for ODS vanes. Directional forging was deemed most applicable to high pressure turbine (HPT) vanes with their large thickness variations while plate bending was determined to be most cost effective for low pressure turbine (LPT) vanes because of their limited thickness variations. Since the F101 LPT vane was selected for study in this program, development of plate bending was carried through to establishment of a preliminary process. Preparation of ODS alloy plate for bending was found to be a straight forward process using currently available bar stock, providing that the capability for reheating between roll passes is available. Advanced ODS-NiCrAl and ODS-FeCrAl alloys were utilized on this program. Workability of all alloys was adequate for directional forging and plate bending, but only the ODS-FeCrAl had adequate workability for shaped preform extrustion

    Mosquito inspired medical needles

    Get PDF
    The stinging proboscis in mosquitos have diameters of only 40-100 μm which is much less than the thinnest medical needles and the mechanics of these natural stinging mechanisms have therefore attracted attention amongst developers of injection devises. The mosquito use a range of different strategies to lower the required penetration force hence allowing a thinner and less stiff proboscis structure. Earlier studies of the mosquito proboscis insertion strategies have shown how each of the single strategies reduces the required penetration force. The present paper gives an overview of the advanced set of mechanisms that allow the mosquito to penetrate human skin and also presents other biological mechanisms that facilitate skin penetration. Results from experiments in a skin mimic using biomimetic equivalents to the natural mechanisms are presented. This includes skin stretching, insertion speed and vibration. Combining slow insertion speed with skin tension and slow vibration reduces the penetration force with 40%.</p

    Heat conduction from irregular surfaces

    Get PDF
    The effect of irregularities on the rate of heat conduction from a two-dimensional isothermal surface into a semi infinite medium is considered. The effect of protrusions, depressions, and surface roughness is quantified in terms of the displacement of the linear temperature profile prevailing far from the surface. This shift, coined the displacement length, is designated as an appropriate global measure of the effect of the surface indentations incorporating the particular details of the possibly intricate geometry. To compute the displacement length, Laplace's equation describing the temperature distribution in the semi-infinite space above the surface is solved numerically by a modified Schwarz-Christoffel transformation whose computation requires solving a system of highly non-linear algebraic equations by iterative methods, and an integral equation method originating from the single-layer integral representation of a harmonic function involving the periodic Green's function. The conformal mapping method is superior in that it is capable of handling with high accuracy a large number of vertices and intricate wall geometries. On the other hand, the boundary integral method yields the displacement length as part of the solution. Families of polygonal wall shapes composed of segments in regular, irregular, and random arrangement are considered, and pre-fractal geometries consisting of large numbers of vertices are analyzed. The results illustrate the effect of wall geometry on the flux distribution and on the overall enhancement in the rate of transport for regular and complex wall shapes
    corecore