312,787 research outputs found

    A Sums-of-Squares Extension of Policy Iterations

    Full text link
    In order to address the imprecision often introduced by widening operators in static analysis, policy iteration based on min-computations amounts to considering the characterization of reachable value set of a program as an iterative computation of policies, starting from a post-fixpoint. Computing each policy and the associated invariant relies on a sequence of numerical optimizations. While the early research efforts relied on linear programming (LP) to address linear properties of linear programs, the current state of the art is still limited to the analysis of linear programs with at most quadratic invariants, relying on semidefinite programming (SDP) solvers to compute policies, and LP solvers to refine invariants. We propose here to extend the class of programs considered through the use of Sums-of-Squares (SOS) based optimization. Our approach enables the precise analysis of switched systems with polynomial updates and guards. The analysis presented has been implemented in Matlab and applied on existing programs coming from the system control literature, improving both the range of analyzable systems and the precision of previously handled ones.Comment: 29 pages, 4 figure

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    In the present work, the boundary element method (BEM) is chosen as the basic analysis tool, principally because the definition of temperature, flux, displacement and traction are very precise on a boundary-based discretization scheme. One fundamental difficulty is, of course, that a BEM formulation requires a considerable amount of analytical work, which is not needed in the other numerical methods. Progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The primary thrust of the program to date has been directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state

    Abstract Acceleration in Linear relation analysis (extended version)

    Get PDF
    Linear relation analysis is a classical abstract interpretation based on an over-approximation of reachable numerical states of a program by convex polyhedra. Since it works with a lattice of infinite height, it makes use of a widening operator to enforce the convergence of fixed point computations. Abstract acceleration is a method that computes the precise abstract effect of loops wherever possible and uses widening in the general case. Thus, it improves both the precision and the efficiency of the analysis. This research report gives a comprehensive tutorial on abstract acceleration: its origins in Presburger-based acceleration including new insights w.r.t. the linear accelerability of linear transformations, methods for simple and nested loops, recent extensions, tools and applications, and a detailed discussion of related methods and future perspectives. This is the long version of a paper under submission

    Certified Roundoff Error Bounds Using Semidefinite Programming.

    Get PDF
    Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability to reason about rounding is especially important if one wants to explore a range of potential representations, for instance for FPGAs or custom hardware implementation. This problem becomes challenging when the program does not employ solely linear operations as non-linearities are inherent to many interesting computational problems in real-world applications. Existing solutions to reasoning are limited in the presence of nonlinear correlations between variables, leading to either imprecise bounds or high analysis time. Furthermore, while it is easy to implement a straightforward method such as interval arithmetic, sophisticated techniques are less straightforward to implement in a formal setting. Thus there is a need for methods which output certificates that can be formally validated inside a proof assistant. We present a framework to provide upper bounds on absolute roundoff errors. This framework is based on optimization techniques employing semidefinite programming and sums of squares certificates, which can be formally checked inside the Coq theorem prover. Our tool covers a wide range of nonlinear programs, including polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our tool produces more precise error bounds for 37 percent of all programs and yields better performance in 73 percent of all programs

    Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina

    Get PDF
    The paper discusses the behavior of a typical masonry building in Bosnia and Herzegovina built in the 50’s without any seismic guidelines. A global numerical model of the building has been built and masonry material has been simulated as nonlinear. Additionally, calculations done with a "less" sophisticated model are in a good correlation with the finite element method (FEM) calculations. It was able to "grasp" the damage pattern; not as detailed as in the FEM calculations, but still quite good. On the basis of this it may be concluded that in this case calculation with Frame by Macro Elements (FME) program could be recommended for future analysis of this type of structures, having quite good results with a less computation time. However, in the need for more precise results FEM should be utilized

    Differentially Testing Soundness and Precision of Program Analyzers

    Full text link
    In the last decades, numerous program analyzers have been developed both by academia and industry. Despite their abundance however, there is currently no systematic way of comparing the effectiveness of different analyzers on arbitrary code. In this paper, we present the first automated technique for differentially testing soundness and precision of program analyzers. We used our technique to compare six mature, state-of-the art analyzers on tens of thousands of automatically generated benchmarks. Our technique detected soundness and precision issues in most analyzers, and we evaluated the implications of these issues to both designers and users of program analyzers

    NAPJATOSTNÍ ANALÝZA DVOJČATNÝCH LAMEL V KALCITU S VYUŽITÍM OIM (EBSD)

    Get PDF
    In the second half of the 20th century a lot of paleostress estimation methods based on calcite twinning has been developed. Even though one can get required data on an Universal stage, Orientation Imaging Microscopy (OIM) using Electron Backscatter Diffraction (EBSD) provides much precise data. A new computer program has been developed for stress analysis of calcite twin lamellae, including most of the methods common in the literature, and processing Ustage and EBSD data as well. Combination of precise calcite lattice orientation measurements (EBSD) and numerical methods of paleostress analysis make calcite a very useful tool for evaluating deformation pathways in sedimentary complexes
    corecore