6,169 research outputs found

    A computational framework for sound segregation in music signals

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    The geometry of kernelized spectral clustering

    Full text link
    Clustering of data sets is a standard problem in many areas of science and engineering. The method of spectral clustering is based on embedding the data set using a kernel function, and using the top eigenvectors of the normalized Laplacian to recover the connected components. We study the performance of spectral clustering in recovering the latent labels of i.i.d. samples from a finite mixture of nonparametric distributions. The difficulty of this label recovery problem depends on the overlap between mixture components and how easily a mixture component is divided into two nonoverlapping components. When the overlap is small compared to the indivisibility of the mixture components, the principal eigenspace of the population-level normalized Laplacian operator is approximately spanned by the square-root kernelized component densities. In the finite sample setting, and under the same assumption, embedded samples from different components are approximately orthogonal with high probability when the sample size is large. As a corollary we control the fraction of samples mislabeled by spectral clustering under finite mixtures with nonparametric components.Comment: Published at http://dx.doi.org/10.1214/14-AOS1283 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimating Local Function Complexity via Mixture of Gaussian Processes

    Full text link
    Real world data often exhibit inhomogeneity, e.g., the noise level, the sampling distribution or the complexity of the target function may change over the input space. In this paper, we try to isolate local function complexity in a practical, robust way. This is achieved by first estimating the locally optimal kernel bandwidth as a functional relationship. Specifically, we propose Spatially Adaptive Bandwidth Estimation in Regression (SABER), which employs the mixture of experts consisting of multinomial kernel logistic regression as a gate and Gaussian process regression models as experts. Using the locally optimal kernel bandwidths, we deduce an estimate to the local function complexity by drawing parallels to the theory of locally linear smoothing. We demonstrate the usefulness of local function complexity for model interpretation and active learning in quantum chemistry experiments and fluid dynamics simulations.Comment: 19 pages, 16 figure

    Computer simulation of liquid crystals

    Get PDF
    A review is presented of molecular and mesoscopic computer simulations of liquid crystalline systems. Molecular simulation approaches applied to such systems are described and the key findings for bulk phase behaviour are reported. Following this, recently developed lattice Boltzmann (LB) approaches to the mesoscale modelling of nemato-dynamics are reviewed. The article concludes with a discussion of possible areas for future development in this field.</p

    Analytical QCD and multiparticle production

    Get PDF
    We review the perturbative approach to multiparticle production in hard collision processes. It is investigated to what extent parton level analytical calculations at low momentum cut-off can reproduce experimental data on the hadronic final state. Systematic results are available for various observables with the next-to-leading logarithmic accuracy (the so-called modified leading logarithmic approximation - MLLA). We introduce the analytical formalism and then discuss recent applications concerning multiplicities, inclusive spectra, correlations and angular flows in multi-jet events. In various cases the perturbative picture is surprisingly successful, even for very soft particle production.Comment: 97 pages, LaTeX, 22 figures, uses sprocl.sty (included
    • …
    corecore