6,160 research outputs found

    Oblivious Sensor Fusion via Secure Multi-Party Combinatorial Filter Evaluation

    Get PDF
    This thesis examines the problem of fusing data from several sensors, potentially distributed throughout an environment, in order to consolidate readings into a single coherent view. We consider the setting when sensor units do not wish others to know their specific sensor streams. Standard methods for handling this fusion make no guarantees about what a curious observer may learn. Motivated by applications where data sources may only choose to participate if given privacy guarantees, we introduce a fusion approach that limits what can be inferred. Our approach is to form an aggregate stream, oblivious to the underlying sensor data, and to evaluate a combinatorial filter on that stream. This is achieved via secure multi-party computational techniques built on cryptographic primitives, which we extend and apply to the problem of fusing discrete sensor signals. We prove that the extensions preserve security under the semi- honest adversary model. Though the approach enables several applications of potential interest, we specifically consider a target tracking case study as a running example. Finally, we also report on a basic, proof-of-concept implementation, demonstrating that it can operate in practice; which we report and analyze the (empirical) running times for components in the architecture, suggesting directions for future improvement

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Multidomain Network Based on Programmable Networks: Security Architecture

    Get PDF
    This paper proposes a generic security architecture designed for a multidomain and multiservice network based on programmable networks. The multiservice network allows users of an IP network to run programmable services using programmable nodes located in the architecture of the network. The programmable nodes execute codes to process active packets, which can carry user data and control information. The multiservice network model defined here considers the more pragmatic trends in programmable networks. In this scenario, new security risks that do not appear in traditional IP networks become visible. These new risks are as a result of the execution of code in the programmable nodes and the processing of the active packets. The proposed security architecture is based on symmetric cryptography in the critical process, combined with an efficient manner of distributing the symmetric keys. Another important contribution has been to scale the security architecture to a multidomain scenario in a single and efficient way.Publicad
    corecore