85 research outputs found

    Session Types in Concurrent Calculi: Higher-Order Processes and Objects

    No full text
    This dissertation investigates different formalisms, in the form of programming language calculi, that are aimed at providing a theoretical foundation for structured concurrent programming based on session types. The structure of a session type is essentially a process-algebraic style description of the behaviour of a single program identifier serving as a communication medium (and usually referred to as a channel): the types incorporate typed inputs, outputs, and choices which can be composed to form larger protocol descriptions. The effectiveness of session typing can be attributed to the linear treatment of channels and session types, and to the use of tractable methods such as syntactic duality to decide if the types of two connected channels are compatible. Linearity is ensured when accumulating the uses of a channel into a composite type that describes also the order of those actions. Duality provides a tractable and intuitive method for deciding when two connected channels can interact and exchange values in a statically determined type-safe way. We present our contributions to the theory of sessions, distilled into two families of programming calculi, the first based on higher-order processes and the second based on objects. Our work unifies, improves and extends, in manifold ways, the session primitives and typing systems for the Lambda-calculus, the Pi-calculus, the Object-calculus, and their combinations in multi-paradigm languages. Of particular interest are: the treatment of infinite interactions expressed with recursive sessions; the capacity to encapsulate channels in higher-order structures which can be exchanged and kept suspended, i.e., the use of code as data; the integration of protocol structure directly into the description of objects, providing a powerful and uniformly extensible set of implementation abstractions; finally, the introduction of asynchronous subtyping, which enables controlled reordering of actions on either side of a session. Our work on higher-order processes and on object calculi for session-based concurrent programming provides a theoretical foundation for programming language design integrating functional, process, and object-oriented features

    Static Type Inference for the Q language using Constraint Logic Programming

    Get PDF
    We describe an application of Prolog: a type inference tool for the Q functional language. Q is a terse vector processing language, a descendant of APL, which is getting more and more popular, especially in financial applications. Q is a dynamically typed language, much like Prolog. Extending Q with static typing improves both the readability of programs and programmer productivity, as type errors are discovered by the tool at compile time, rather than through debugging the program execution. We map the task of type inference onto a constraint satisfaction problem and use constraint logic programming, in particular the Constraint Handling Rules extension of Prolog. We determine the possible type values for each program expression and detect inconsistencies. As most built-in function names of Q are overloaded, i.e. their meaning depends on the argument types, a quite complex system of constraints had to be implemented

    Security analysis of private data enquiries in Erlang

    Get PDF
    Privacy is an issue of increasing concern to the Inter- net user. To ensure the continued success of distributed information systems, a reliable information flow must be established in certified but immediately evident ways. We begin with basic consideration of the privacy problem in the general setting of database enquiries. From there, we develop a simple solution, which we illustrate with a simple implementation in the programming language Erlang. We first provide an informal security analysis that is then developed into a formal definition of a type system for noninterference

    Automatic Verification of Erlang-Style Concurrency

    Full text link
    This paper presents an approach to verify safety properties of Erlang-style, higher-order concurrent programs automatically. Inspired by Core Erlang, we introduce Lambda-Actor, a prototypical functional language with pattern-matching algebraic data types, augmented with process creation and asynchronous message-passing primitives. We formalise an abstract model of Lambda-Actor programs called Actor Communicating System (ACS) which has a natural interpretation as a vector addition system, for which some verification problems are decidable. We give a parametric abstract interpretation framework for Lambda-Actor and use it to build a polytime computable, flow-based, abstract semantics of Lambda-Actor programs, which we then use to bootstrap the ACS construction, thus deriving a more accurate abstract model of the input program. We have constructed Soter, a tool implementation of the verification method, thereby obtaining the first fully-automatic, infinite-state model checker for a core fragment of Erlang. We find that in practice our abstraction technique is accurate enough to verify an interesting range of safety properties. Though the ACS coverability problem is Expspace-complete, Soter can analyse these verification problems surprisingly efficiently.Comment: 12 pages plus appendix, 4 figures, 1 table. The tool is available at http://mjolnir.cs.ox.ac.uk/soter

    Precise explanation of success typing errors

    Full text link
    Nowadays, many dynamic languages come with (some sort of) type inference in order to detect type errors statically. Often, in order not to unnecessarily reject programs which are allowed under a dynamic type discipline, their type inference algorithms are based on non-standard (i.e., not unification based) type inference algorithms. Instead, they employ aggressive forwards and backwards propagation of subtype constraints. Although such analyses are effective in locating actual programming errors, the errors they report are often extremely difficult for programmers to follow and convince themselves of their validity. We have observed this phenomenon in the context of Erlang: for a number of years now its implementation comes with a static analysis tool called Dialyzer which, among other software discrepancies, detects definite type errors (i.e., code points that will result in a runtime error if executed) by inferring success typings. In this work, we extend the analysis that infers success typings, with infrastructure that maintains additional information that can be used to provide precise (i.e., minimal) explanations about the cause of a discrepancy reported by Dialyzer using program slicing. We have implemented the techniques we describe in a publicly available development branch of DialyzerSagonas, K.; Silva Galiana, JF.; Tamarit Muñoz, S. (2013). Precise explanation of success typing errors. En Proceeding PEPM '13 Proceedings of the ACM SIGPLAN 2013 workshop on Partial evaluation and program manipulation. Association for Computing Machinery (ACM). 33-42. doi:10.1145/2426890.2426897S334

    Modular session types for objects

    Get PDF
    Session types allow communication protocols to be specified type-theoretically so that protocol implementations can be verified by static type checking. We extend previous work on session types for distributed object-oriented languages in three ways. (1) We attach a session type to a class definition, to specify the possible sequences of method calls. (2) We allow a session type (protocol) implementation to be modularized, i.e. partitioned into separately-callable methods. (3) We treat session-typed communication channels as objects, integrating their session types with the session types of classes. The result is an elegant unification of communication channels and their session types, distributed object-oriented programming, and a form of typestate supporting non-uniform objects, i.e. objects that dynamically change the set of available methods. We define syntax, operational se-mantics, a sound type system, and a sound and complete type checking algorithm for a small distributed class-based object-oriented language with structural subtyping. Static typing guarantees that both sequences of messages on channels, and sequences of method calls on objects, conform to type-theoretic specifications, thus ensuring type-safety. The language includes expected features of session types, such as delegation, and expected features of object-oriented programming, such as encapsulation of local state.Comment: Logical Methods in Computer Science (LMCS), International Federation for Computational Logic, 201

    On Preserving the Behavior in Software Refactoring: A Systematic Mapping Study

    Get PDF
    Context: Refactoring is the art of modifying the design of a system without altering its behavior. The idea is to reorganize variables, classes and methods to facilitate their future adaptations and comprehension. As the concept of behavior preservation is fundamental for refactoring, several studies, using formal verification, language transformation and dynamic analysis, have been proposed to monitor the execution of refactoring operations and their impact on the program semantics. However, there is no existing study that examines the available behavior preservation strategies for each refactoring operation. Objective: This paper identifies behavior preservation approaches in the research literature. Method: We conduct, in this paper, a systematic mapping study, to capture all existing behavior preservation approaches that we classify based on several criteria including their methodology, applicability, and their degree of automation. Results: The results indicate that several behavior preservation approaches have been proposed in the literature. The approaches vary between using formalisms and techniques, developing automatic refactoring safety tools, and performing a manual analysis of the source code. Conclusion: Our taxonomy reveals that there exist some types of refactoring operations whose behavior preservation is under-researched. Our classification also indicates that several possible strategies can be combined to better detect any violation of the program semantics
    corecore