717 research outputs found

    IMPEDANCE-BASED FAULT LOCATION METHODS FOR TRANSMISSION LINE CONNECTING WIND FARM PLANTS

    Get PDF
    With an increasing capacity of wind power installed in the world, the impact of wind generation during fault condition has been studied. Wind plants equipped with induction generator results in a different fault behavior in transmission networks. In this paper, the validation of existing impedance-based fault location methods are performed on a transmission line connecting wind plant equipped with three different types of induction generators. This work is based on the simulation in real-time digital simulator (RTDS). Squirrel-cage induction generator (SCIG), wound-rotor induction generator (WRIG) and doubly-fed induction generator (DFIG) are the three common generators used for wind power plants. Therefore, models for these induction generators are developed and the control schemes for each type are simulated to represent a working wind plant. Pitch angle control and variable slip control are applied to SCIG and WRIG respectively to maintain a constant power output of the wind generators. DFIG utilizes vector control strategy to control the power output of the wind generators independently. After the wind plant model is developed, it is connected to an equivalent transmission line system. A fault is simulated on the transmission line so that the fault location algorithm can be applied to determine the fault location estimation with the existence of wind plant. Results of fault location estimation are compared and discussed when fault location algorithms are applied to transmission line system connecting different induction generator-based wind plant. It is validated that certain fault location algorithms are not accurate for transmission line connecting wind plant

    Fault analysis and protection for wind power generation systems

    Get PDF
    Wind power is growing rapidly around the world as a means of dealing with the world energy shortage and associated environmental problems. Ambitious plans concerning renewable energy applications around European countries require a reliable yet economic system to generate, collect and transmit electrical power from renewable resources. In populous Europe, collective offshore large-scale wind farms are efficient and have the potential to reach this sustainable goal. This means that an even more reliable collection and transmission system is sought. However, this relatively new area of offshore wind power generation lacks systematic fault transient analysis and operational experience to enhance further development. At the same time, appropriate fault protection schemes are required. This thesis focuses on the analysis of fault conditions and investigates effective fault ride-through and protection schemes in the electrical systems of wind farms, for both small-scale land and large-scale offshore systems. Two variable-speed generation systems are considered: doubly-fed induction generators (DFIGs) and permanent magnet synchronous generators (PMSGs) because of their popularity nowadays for wind turbines scaling to several-MW systems. The main content of the thesis is as follows. The protection issues of DFIGs are discussed, with a novel protection scheme proposed. Then the analysis of protection scheme options for the fully rated converter, direct-driven PMSGs are examined and performed with simulation comparisons. Further, the protection schemes for wind farm collection and transmission systems are studied in terms of voltage level, collection level wind farm collection grids and high-voltage transmission systems for multi-terminal DC connected transmission systems, the so-called “Supergrid”. Throughout the thesis, theoretical analyses of fault transient performances are detailed with PSCAD/EMTDC simulation results for verification. Finally, the economic aspect for possible redundant design of wind farm electrical systems is investigated based on operational and economic statistics from an example wind farm project

    Fault Behavior of Wind Turbines

    Get PDF
    Synchronous generators have always been the dominant generation type in the grid. This fact affected both planning and operation of power systems. With the fast increase of wind power share in the grid in the last decade, the situation is changing. In some countries wind power represents already a consistent amount of the total generation. Wind turbines can be classified as non-synchronous generation and they behave differently than synchronous generation under many circumstances. Fault behavior is an important example. This thesis deals with the behavior of wind turbines during faults in the grid. The first part focuses on the fault currents delivered by wind turbines with Doubly-Fed Induction Generators (DFIG). The second part investigates the impact of faults below the transmission level on wind turbine grid fault ride-through and the voltage support that wind turbines can provide in weak grids during faults. A wide theoretical analysis of the fault current contribution of DFIG wind turbines with crowbar protection is carried out. A general analytical method for fault current calculation during symmetrical and unsymmetrical faults in the grid is proposed. The analytical method can be used to find the maximum fault current and its AC or DC components without the need to actually perform detailed simulations, which is the method used today. DFIG wind turbines may also be protected using a chopper resistance on the DC-link. A method to model the DC-link with chopper as an equivalent resistance connected to the generator rotor during symmetrical grid faults is presented. This allows to calculate the short-circuit currents of a DFIG with chopper protection as an equivalent DFIG with crowbar protection. This is useful since fault current calculation methods for DFIG with crowbar are available in the literature. Moreover, power system simulation tools include standard models of DFIG wind turbines with crowbar protection, but often not with chopper protection. The use of an aggregate model to represent the fault current contribution of a wind farm has been analyzed through simulations. It has been found that the aggregate model is able to reproduce accurately the total fault current of the wind farm for symmetrical and unsymmetrical faults. The use of aggregate models simplifies simulation models and saves simulation time. The Swedish grid code requires wind turbines at all voltage levels to ride through faults at the transmission network. For faults at voltage levels below transmission level fault clearing times are often longer and this could impact on fault ride-through of wind turbines. Simulation of study cases with faults at sub-transmission level, performed using the standard Nordic 32 test system, show that wind turbines should still be able to ride through such faults. Only in case of high dynamic load scenarios and failure of the protection system, wind turbines could disconnect from the grid. Load modelling is important when carrying out this analysis. Faults on adjacent MV feeders seriously endanger grid fault ride-through (GFRT) of wind turbines. Finally, an investigation on the voltage support of wind turbines in weak networks during faults has been carried out. A simplified model of the power system of the Danish island of Bornholm has been used as a test system. It has been found that the minimum requirements for voltage support set by grid codes do not result in satisfactory voltage recovery in weak grids after fault clearing. However, if properly controlled, wind turbines are able to provide a voltage support comparable to that supplied by power plants with synchronous generation

    THE STABILITY ANALYSIS FOR WIND TURBINES WITH DOUBLY FED INDUCTION GENERATORS

    Get PDF
    The quickly increasing, widespread use of wind generation around the world reduces carbon emissions, decreases the effects of global warming, and lowers dependence on fossil fuels. However, the growing penetration of wind power requires more effort to maintain power systems stability. This dissertation focuses on developing a novel algorithm which dynamically optimizes the proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) driven by a wind turbine to increase the transient performance based on small signal stability analysis. Firstly, the impact of wind generation is introduced. The stability of power systems with wind generation is described, including the different wind generator technologies, and the challenges in high wind penetration conditions. Secondly, the small signal stability analysis model of wind turbines with DFIG is developed, including detailed rotor/grid side converter models, and the interface with the power grid. Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the optimal parameters of DFIG PI gains to maximize the damping ratios of system eigenvalues in different wind speeds. Based on the historical data, the artificial neural networks (ANNs) are designed, trained, and have the ability to quickly forecast the optimal parameters. The ANN controllers are designed to dynamically adjust PI gains online. Finally, system studies have been provided for a single machine connected to an infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a multi machine system (MMS), respectively. A detailed analysis for MMS with different wind penetration levels has been shown according to grid code. Moreover, voltage stability improvement and grid loss reduction in IEEE 34-bus distribution system, including WT-DFIG under unbalanced heavy loading conditions, are investigated. The simulation results show the algorithm can greatly reduce low frequency oscillations and improve transient performance of DFIGs system. It realizes off-line optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI gains. The results also provide some useful conclusions and explorations for wind generation design, operations, and connection to the power grid. Advisors: Sohrab Asgarpoor and Wei Qia

    THE STABILITY ANALYSIS FOR WIND TURBINES WITH DOUBLY FED INDUCTION GENERATORS

    Get PDF
    The quickly increasing, widespread use of wind generation around the world reduces carbon emissions, decreases the effects of global warming, and lowers dependence on fossil fuels. However, the growing penetration of wind power requires more effort to maintain power systems stability. This dissertation focuses on developing a novel algorithm which dynamically optimizes the proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) driven by a wind turbine to increase the transient performance based on small signal stability analysis. Firstly, the impact of wind generation is introduced. The stability of power systems with wind generation is described, including the different wind generator technologies, and the challenges in high wind penetration conditions. Secondly, the small signal stability analysis model of wind turbines with DFIG is developed, including detailed rotor/grid side converter models, and the interface with the power grid. Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the optimal parameters of DFIG PI gains to maximize the damping ratios of system eigenvalues in different wind speeds. Based on the historical data, the artificial neural networks (ANNs) are designed, trained, and have the ability to quickly forecast the optimal parameters. The ANN controllers are designed to dynamically adjust PI gains online. Finally, system studies have been provided for a single machine connected to an infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a multi machine system (MMS), respectively. A detailed analysis for MMS with different wind penetration levels has been shown according to grid code. Moreover, voltage stability improvement and grid loss reduction in IEEE 34-bus distribution system, including WT-DFIG under unbalanced heavy loading conditions, are investigated. The simulation results show the algorithm can greatly reduce low frequency oscillations and improve transient performance of DFIGs system. It realizes off-line optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI gains. The results also provide some useful conclusions and explorations for wind generation design, operations, and connection to the power grid. Advisors: Sohrab Asgarpoor and Wei Qia

    Large Grid-Connected Wind Turbines

    Get PDF
    This book covers the technological progress and developments of a large-scale wind energy conversion system along with its future trends, with each chapter constituting a contribution by a different leader in the wind energy arena. Recent developments in wind energy conversion systems, system optimization, stability augmentation, power smoothing, and many other fascinating topics are included in this book. Chapters are supported through modeling, control, and simulation analysis. This book contains both technical and review articles

    Wind Power Integration into Power Systems: Stability and Control Aspects

    Get PDF
    Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to clean and low-carbon renewable energy sources. Complex stability issues, such as frequency, voltage, and oscillatory instability, are frequently reported in the power grids of many countries and regions (e.g., Germany, Denmark, Ireland, and South Australia) due to the substantially increased wind power generation. Control techniques, such as virtual/emulated inertia and damping controls, could be developed to address these stability issues, and additional devices, such as energy storage systems, can also be deployed to mitigate the adverse impact of high wind power generation on various system stability problems. Moreover, other wind power integration aspects, such as capacity planning and the short- and long-term forecasting of wind power generation, also require careful attention to ensure grid security and reliability. This book includes fourteen novel research articles published in this Energies Special Issue on Wind Power Integration into Power Systems: Stability and Control Aspects, with topics ranging from stability and control to system capacity planning and forecasting

    Wind Farm

    Get PDF
    During the last two decades, increase in electricity demand and environmental concern resulted in fast growth of power production from renewable sources. Wind power is one of the most efficient alternatives. Due to rapid development of wind turbine technology and increasing size of wind farms, wind power plays a significant part in the power production in some countries. However, fundamental differences exist between conventional thermal, hydro, and nuclear generation and wind power, such as different generation systems and the difficulty in controlling the primary movement of a wind turbine, due to the wind and its random fluctuations. These differences are reflected in the specific interaction of wind turbines with the power system. This book addresses a wide variety of issues regarding the integration of wind farms in power systems. The book contains 14 chapters divided into three parts. The first part outlines aspects related to the impact of the wind power generation on the electric system. In the second part, alternatives to mitigate problems of the wind farm integration are presented. Finally, the third part covers issues of modeling and simulation of wind power system

    Dynamic Phasor Modeling of Type 3 Wind Farm including Multi-mass and LVRT Effects

    Get PDF
    The proportion of power attributable to wind generation has grown significantly in the last two decades. System impact studies such as load flow studies and short circuit studies, are important for planning before integration of any new wind generation into the existing power grid. Short circuit modelling is central in these planning studies to determine protective relay settings, protection coordination, and equipment ratings. Numerous factors, such as low voltage situations, power electronic switching, control actions, sub-synchronous oscillations, etc., influence the response of wind farms to short circuit conditions, and that makes short circuit modelling of wind farms an interesting, complex, and challenging task. Power electronics-based converters are very common in wind power plants, enabling the plant to operate at a wide range of wind speeds and provide reactive power support without disconnection from the grid during low voltage scenarios. This has led to the growth of Type 3 (with rotor side converter) and Type 4 (with stator side full converter) wind generators, in which power electronics-based converters and controls are an integral part. The power electronics in these generators are proprietary in nature, which makes it difficult to obtain the necessary information from the manufacturer to model them accurately in planning studies for conditions such as those found during faults or low voltage ride through (LVRT) periods. The use of power electronic controllers also has led to phenomena such as sub-synchronous control interactions in series compensated Type 3 wind farms, which are characterized by non-fundamental frequency oscillations. The above factors have led to the need to develop generic models for wind farms that can be used in studies by planners and protection engineers. The current practice for short circuit modelling of wind farms in the power industry is to utilize transient stability programs based on either simplified electromechanical fundamental frequency models or detailed electromagnetic time domain models. The fundamental frequency models are incapable of representing the majority of critical wind generator fault characteristics, such as during power electronic switching conditions and sub-synchronous interactions. The detailed time domain models, though accurate, demand high levels of computation and modelling expertise. A simple yet accurate modelling methodology for wind generators that does not require resorting to fundamental frequency based simplifications or time domain type simulations is the basis for this research work. This research work develops an average value model and a dynamic phasor model of a Type 3 DFIG wind farm. The average value model replaces the switches and associated phenomena by equivalent current and voltage sources. The dynamic phasor model is based on generalized averaging theory, where the system variables are represented as time varying Fourier coefficients known as dynamic phasors. The two types models provide a generic type model and achieve a middle ground between conventional electromechanical models and the cumbersome electromagnetic time domain models. The dynamic phasor model enables the user to consider each harmonic component individually; this selective view of the components of the system response is not achievable in conventional electromagnetic transient simulations. Only the appropriate dynamic phasors are selected for the required fault behaviour to be represented, providing greater computational efficiency than detailed time domain simulations. A detailed electromagnetic transient (EMT) simulation model is also developed in this thesis using a real-time digital simulator (RTDS). The results obtained with the average value model and the dynamic phasor model are validated with an accurate electromagnetic simulation model and some state-of-the-art industrial schemes: a voltage behind transient reactance model, an analytical expression model, and a voltage dependent current source model. The proposed RTDS models include the effect of change of flux during faulted conditions in the wind generator during abnormal system conditions instead of incorrectly assuming it is a constant. This was not investigated in previous studies carried out in the real-time simulations laboratory at the University of Saskatchewan or in various publications reported in the literature. The most commonly used LVRT topologies, such as rotor side crowbar circuit, DC-link protection scheme, and series dynamic braking resistance (SDBR) in rotor and stator circuits, are investigated in the short circuit studies. The RTDS model developed uses a multi-mass (three-mass) model of the mechanical drive train instead of a simple single-mass model to represent torsional dynamics. The single mass model considers the blade inertia, the turbine hub, and the generator as a single lumped mass and so cannot reproduce the torsional behaviour. The root cause of sub-synchronous frequencies in Type 3 wind generators is not well understood by system planners and protection engineers. Some literature reports it is self excitation while others report it is due to sub-synchronous control interactions. One publication in the stability literature reports on a small signal analysis study aimed at finding the root cause of the problem, and a similar type of analysis was performed in this thesis. A linearized model was developed, which includes the generator model, a three mass drive train, rotor side converter, and the grid side converter represented as a constant voltage source. The linear model analysis showed that the sub-synchronous oscillations are due to control interactions between the rotor side controller of the Type 3 wind power plant and the series capacitor in the transmission line. The rotor side controls were tuned to obtain a stable response at higher levels of compensation. A real-time simulation model of a 450 MW Type 3 wind farm consisting of 150 units transmitting power via 345 kV transmission line was developed on the RTDS. The dynamic phasor method is shown to be accurate for representing faults at the point of interconnection of the wind farm to the grid for balanced and unbalanced faults as well as for different sub- synchronous oscillation frequencies
    • …
    corecore