44 research outputs found

    Strategies for internet route control: past, present and future

    Get PDF
    Uno de los problemas más complejos en redes de computadores es el de proporcionar garantías de calidad y confiabilidad a las comunicaciones de datos entre entidades que se encuentran en dominios distintos. Esto se debe a un amplio conjunto de razones -- las cuales serán analizadas en detalle en esta tesis -- pero de manera muy breve podemos destacar: i) la limitada flexibilidad que presenta el modelo actual de encaminamiento inter-dominio en materia de ingeniería de tráfico; ii) la naturaleza distribuida y potencialmente antagónica de las políticas de encaminamiento, las cuales son administradas individualmente y sin coordinación por cada dominio en Internet; y iii) las carencias del protocolo de encaminamiento inter-dominio utilizado en Internet, denominado BGP (Border Gateway Protocol).El objetivo de esta tesis, es precisamente el estudio y propuesta de soluciones que permitan mejorar drásticamente la calidad y confiabilidad de las comunicaciones de datos en redes conformadas por múltiples dominios.Una de las principales herramientas para lograr este fin, es tomar el control de las decisiones de encaminamiento y las posibles acciones de ingeniería de tráfico llevadas a cabo en cada dominio. Por este motivo, esta tesis explora distintas estrategias de como controlar en forma precisa y eficiente, tanto el encaminamiento como las decisiones de ingeniería de tráfico en Internet. En la actualidad este control reside principalmente en BGP, el cual como indicamos anteriormente, es uno de los principales responsables de las limitantes existentes. El paso natural sería reemplazar a BGP, pero su despliegue actual y su reconocida operatividad en muchos otros aspectos, resultan claros indicadores de que su sustitución (ó su posible evolución) será probablemente gradual. En este escenario, esta tesis propone analizar y contribuir con nuevas estrategias en materia de control de encaminamiento e ingeniería de tráfico inter-dominio en tres marcos temporales distintos: i) en la actualidad en redes IP; ii) en un futuro cercano en redes IP/MPLS (MultiProtocol Label Switching); y iii) a largo plazo en redes ópticas, modelando así una evolución progresiva y realista, facilitando el reemplazo gradual de BGP.Más concretamente, este trabajo analiza y contribuye mediante: - La propuesta de estrategias incrementales basadas en el Control Inteligente de Rutas (Intelligent Route Control, IRC) para redes IP en la actualidad. Las estrategias propuestas en este caso son de carácter incremental en el sentido de que interaccionan con BGP, solucionando varias de las carencias que éste presenta sin llegar a proponer aún su reemplazo. - La propuesta de estrategias concurrentes basadas en extender el concepto del PCE (Path Computation Element) proveniente del IETF (Internet Engineering Task Force) para redes IP/MPLS en un futuro cercano. Las estrategias propuestas en este caso son de carácter concurrente en el sentido de que no interaccionan con BGP y pueden ser desplegadas en forma paralela. En este caso, BGP continúa controlando el encaminamiento y las acciones de ingeniería de tráfico inter-dominio del tráfico IP, pero el control del tráfico IP/MPLS se efectúa en forma independiente de BGP mediante los PCEs.- La propuesta de estrategias que reemplazan completamente a BGP basadas en la incorporación de un nuevo agente de control, al cual denominamos IDRA (Inter-Domain Routing Agent). Estos agentes proporcionan un plano de control dedicado, físicamente independiente del plano de datos, y con gran capacidad computacional para las futuras redes ópticas multi-dominio.Los resultados expuestos aquí validan la efectividad de las estrategias propuestas, las cuales mejoran significativamente tanto la concepción como la performance de las actuales soluciones en el área de Control Inteligente de Rutas, del esperado PCE en un futuro cercano, y de las propuestas existentes para extender BGP al área de redes ópticas.One of the most complex problems in computer networks is how to provide guaranteed performance and reliability to the communications carried out between nodes located in different domains. This is due to several reasons -- which will be analyzed in detail in this thesis -- but in brief, this is mostly due to: i) the limited capabilities of the current inter-domain routing model in terms of Traffic Engineering (TE); ii) the distributed and potentially conflicting nature of policy-based routing, where routing policies are managed independently and without coordination among domains; and iii) the clear limitations of the inter-domain routing protocol, namely, the Border Gateway Protocol (BGP). The goal of this thesis is precisely to study and propose solutions allowing to drastically improve the performance and reliability of inter-domain communications. One of the most important tools to achieve this goal, is to control the routing and TE decisions performed by routing domains. Therefore, this thesis explores different strategies on how to control such decisions in a highly efficient and accurate way. At present, this control mostly resides in BGP, but as mentioned above, BGP is in fact one of the main causes of the existing limitations. The natural next-step would be to replace BGP, but the large installed base at present together with its recognized effectiveness in other aspects, are clear indicators that its replacement (or its possible evolution) will probably be gradually put into practice.In this framework, this thesis proposes to to study and contribute with novel strategies to control the routing and TE decisions of domains in three different time frames: i) at present in IP multi-domain networks; ii) in the near-future in IP/MPLS (MultiProtocol Label Switching) multi- domain networks; and iii) in the future optical Internet, modeling in this way a realistic and progressive evolution, facilitating the gradual replacement of BGP.More specifically, the contributions in this thesis can be summarized as follows. - We start by proposing incremental strategies based on Intelligent Route Control (IRC) solutions for IP networks. The strategies proposed in this case are incremental in the sense that they interact with BGP, and tackle several of its well-known limitations. - Then, we propose a set of concurrent route control strategies for MPLS networks, based on broadening the concept of the Path Computation Element (PCE) coming from the IETF (Internet Engineering Task Force). Our strategies are concurrent in the sense that they do not interact directly with BGP, and they can be deployed in parallel. In this case, BGP still controlls the routing and TE actions concerning regular IP-based traffic, but not how IP/MPLS paths are routed and controlled. These are handled independently by the PCEs.- We end with the proposal of a set of route control strategies for multi-domain optical networks, where BGP has been completely replaced. These strategies are supported by the introduction of a new route control element, which we named Inter-Domain Routing Agent (IDRA). These IDRAs provide a dedicated control plane, i.e., physically independent from the data plane, and with high computational capacity for future optical networks.The results obtained validate the effectiveness of the strategies proposed here, and confirm that our proposals significantly improve both the conception and performance of the current IRC solutions, the expected PCE in the near-future, as well as the existing proposals about the optical extension of BGP.Postprint (published version

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Multiple Failure Survivability in WDM Mesh Networks

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation (NSF) / ANI 01-21662 ITR and ACI 99-84492 CAREE

    Resilience mechanisms for carrier-grade networks

    Get PDF
    In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. These requirements are pushing network carriers for high transport capacity, energy efficiency, as well as high-availability services with low latency. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Indeed, optical transport technologies are the foundation supporting the current telecommunication network backbones, because of the high transmission bandwidth achieved in fiber optical networks. Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization, specifically with transmission rates above 100 Gbps. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). Recently, a new protection scheme referred to as Network Coding Protection (NCP) has emerged as an innovative solution to proactively enable protection in an agile and efficient manner by means of throughput improvement techniques such as Network Coding. It is an intuitive reasoning that the throughput advantages of NCP might be magnified by means of the flexible-grid provided by EONs. The goal of this thesis is three-fold. The first, is to study the advantages of NCP schemes in planning scenarios. For this purpose, this thesis focuses on the performance of NCP assuming both a fixed as well as a flexible spectrum grid. However, conversely to planning scenarios, in dynamic scenarios the accuracy of Network State Information (NSI) is crucial since inaccurate NSI might substantially affect the performance of an NCP scheme. The second contribution of this thesis is to study the performance of protection schemes in dynamic scenarios considering inaccurate NSI. For this purpose, this thesis explores prediction techniques in order to mitigate the negative effects of inaccurate NSI. On the other hand, Internet users are continuously demanding new requirements that cannot be supported by the current host-oriented communication model.This communication model is not suitable for future Internet architectures such as the so-called Internet of Things (IoT). Fortunately, there is a new trend in network research referred to as ID/Locator Split Architectures (ILSAs) which is a non-disruptive technique to mitigate the issues related to host-oriented communications. Moreover, a new routing architecture referred to as Path Computation Element (PCE) has emerged with the aim of overcoming the well-known issues of the current routing schemes. Undoubtedly, routing and protection schemes need to be enhanced to fully exploit the advantages provided by new network architectures.In light of this, the third goal of this thesis introduces a novel PCE-like architecture termed as Context-Aware PCE. In a context-aware PCE scenario, the driver of a path computation is not a host/location, as in conventional PCE architectures, rather it is an interest for a service defined within a context.En los últimos años la llegada de nuevas aplicaciones del llamado Internet del Futuro (FI) está creando requerimientos sumamente exigentes. Estos requerimientos están empujando a los proveedores de redes a incrementar sus capacidades de transporte, eficiencia energética, y sus prestaciones de servicios de alta disponibilidad con baja latencia. Es una práctica sumamente extendida para proveer servicios (FI) la adopción de un modelo multi-capa el cual consiste en el uso de tecnologías IP/MPLS así como también ópticas como por ejemplo Wavelength Division Multiplexing (WDM). De hecho, las tecnologías de transporte son el sustento del backbone de las redes de telecomunicaciones actuales debido al gran ancho de banda que proveen las redes de fibra óptica. Las redes ópticas tradicionales consisten en el uso de un espectro fijo de 50 GHz. Esto resulta en una baja utilización del espectro Óptico, específicamente con tasas de transmisiones superiores a 100 Gbps. Recientemente, las redes ópticas están experimentado cambios significativos con el propósito de proveer un espectro flexible que pueda explotar el potencial de las redes ópticas. Esto ha llevado a un nuevo paradigma denominado Redes Ópticas Elásticas (EON). Por otro lado, un nuevo esquema de protección llamado Network Coding Protection (NCP) ha emergido como una solución innovadora para habilitar de manera proactiva protección eficiente y ágil usando técnicas de mejora de throughput como es Network Coding (NC). Es un razonamiento lógico pensar que las ventajas relacionadas con throughput de NCP pueden ser magnificadas mediante el espectro flexible proveído por las redes EONs. El objetivo de esta tesis es triple. El primero es estudiar las ventajas de esquemas NCP en un escenario de planificación. Para este propósito, esta tesis se enfoca en el rendimiento de NCP asumiendo un espectro fijo y un espectro flexible. Sin embargo, contrario a escenarios de planificación, en escenarios dinámicos la precisión relacionada de la Información de Estado de Red (NSI) es crucial, ya que la imprecisión de NSI puede afectar sustancialmente el rendimiento de un esquema NCP. La segunda contribución de esta tesis es el estudio del rendimiento de esquemas de protección en escenarios dinámicos considerando NSI no precisa. Para este propósito, esta tesis explora técnicas predictivas con el propósito de mitigar los efectos negativos de NSI impreciso. Por otro lado, los usuarios de Internet están demandando continuamente nuevos requerimientos los cuales no pueden ser soportados por el modelo de comunicación orientado a hosts. Este modelo de comunicaciones no es factible para arquitecturas FI como es el Internet de las cosas (IoT). Afortunadamente, existe un nueva línea investigativa llamada ID/Locator Split Architectures (ILSAs) la cual es una técnica no disruptiva para mitigar los problemas relacionadas con el modelo de comunicación orientado a hosts. Además, un nuevo esquema de enrutamiento llamado as Path Computation Element (PCE) ha emergido con el propósito de superar los problemas bien conocidos de los esquemas de enrutamiento tradicionales. Indudablemente, los esquemas de enrutamiento y protección deben ser mejorados para que estos puedan explotar las ventajas introducidas por las nuevas arquitecturas de redes. A luz de esto, el tercer objetivo de esta tesis es introducir una nueva arquitectura PCE denominada Context-Aware PCE. En un escenario context-aware PCE, el objetivo de una acción de computación de camino no es un host o localidad, como es el caso en lo esquemas PCE tradicionales. Más bien, es un interés por un servicio definido dentro de una información de contexto

    Resource allocation and scalability in dynamic wavelength-routed optical networks.

    Get PDF
    This thesis investigates the potential benefits of dynamic operation of wavelength-routed optical networks (WRONs) compared to the static approach. It is widely believed that dynamic operation of WRONs would overcome the inefficiencies of the static allocation in improving resource use. By rapidly allocating resources only when and where required, dynamic networks could potentially provide the same service that static networks but at decreased cost, very attractive to network operators. This hypothesis, however, has not been verified. It is therefore the focus of this thesis to investigate whether dynamic operation of WRONs can save significant number of wavelengths compared to the static approach whilst maintaining acceptable levels of delay and scalability. Firstly, the wavelength-routed optical-burst-switching (WR-OBS) network architecture is selected as the dynamic architecture to be studied, due to its feasibility of implementation and its improved network performance. Then, the wavelength requirements of dynamic WR-OBS are evaluated by means of novel analysis and simulation and compared to that of static networks for uniform and non-uniform traffic demand. It is shown that dynamic WR-OBS saves wavelengths with respect to the static approach only at low loads and especially for sparsely connected networks and that wavelength conversion is a key capability to significantly increase the benefits of dynamic operation. The mean delay introduced by dynamic operation of WR-OBS is then assessed. The results show that the extra delay is not significant as to violate end-to-end limits of time-sensitive applications. Finally, the limiting scalability of WR-OBS as a function of the lightpath allocation algorithm computational complexity is studied. The trade-off between the request processing time and blocking probability is investigated and a new low-blocking and scalable lightpath allocation algorithm which improves the mentioned trade-off is proposed. The presented algorithms and results can be used in the analysis and design of dynamic WRONs

    Intelligent Network Infrastructures: New Functional Perspectives on Leveraging Future Internet Services

    Get PDF
    The Internet experience of the 21st century is by far very different from that of the early '80s. The Internet has adapted itself to become what it really is today, a very successful business platform of global scale. As every highly successful technology, the Internet has suffered from a natural process of ossification. Over the last 30 years, the technical solutions adopted to leverage emerging applications can be divided in two categories. First, the addition of new functionalities either patching existing protocols or adding new upper layers. Second, accommodating traffic grow with higher bandwidth links. Unfortunately, this approach is not suitable to provide the proper ground for a wide gamma of new applications. To be deployed, these future Internet applications require from the network layer advanced capabilities that the TCP/IP stack and its derived protocols can not provide by design in a robust, scalable fashion. NGNs (Next Generation Networks) on top of intelligent telecommunication infrastructures are being envisioned to support future Internet Services. This thesis contributes with three proposals to achieve this ambitious goal. The first proposal presents a preliminary architecture to allow NGNs to seamlessly request advanced services from layer 1 transport networks, such as QoS guaranteed point-to-multipoint circuits. This architecture is based on virtualization techniques applied to layer 1 networks, and hides from NGNs all complexities of interdomain provisioning. Moreover, the economic aspects involved were also considered, making the architecture attractive to carriers. The second contribution regards a framework to develop DiffServ-MPLS capable networks based exclusively on open source software and commodity PCs. The developed DiffServ-MPLS flexible software router was designed to allow NGN prototyping, that make use of pseudo virtual circuits and assured QoS as a starting point of development. The third proposal presents a state of the art routing and wavelength assignment algorithm for photonic networks. This algorithm considers physical layer impairments to 100% guarantee the requested QoS profile, even in case of single network failures. A number of novel techniques were applied to offer lower blocking probability when compared with recent proposed algorithms, without impacting on setup delay time

    Architectures and protocols for sub-wavelength optical networks: contributions to connectionless and connection-oriented data transport

    Get PDF
    La ràpida evolució d’Internet i l’àmplia gamma de noves aplicacions (per exemple, multimèdia, videoconferència, jocs en línia, etc.) ha fomentat canvis revolucionaris en la manera com ens comuniquem. A més, algunes d’aquestes aplicacions demanden grans quantitats de recursos d’ample de banda amb diversos requeriments de qualitat de servei (QoS). El desenvolupament de la multiplexació per divisió de longitud d’ona (WDM) en els anys noranta va fer molt rendible la disponibilitat d’ample de banda. Avui dia, les tecnologies de commutació òptica de circuits són predominants en el nucli de la xarxa, les quals permeten la configuració de canals (lightpaths) a través de la xarxa. No obstant això, la granularitat d’aquests canals ocupa tota la longitud d’ona, el que fa que siguin ineficients per a proveir canals de menor ample de banda (sub-longitud d’ona). Segons la comunitat científica, és necessari augmentar la transparència dels protocols, així com millorar l’aprovisionament d’ample de banda de forma dinàmica. Per tal de fer això realitat, és necessari desenvolupar noves arquitectures. La commutació òptica de ràfegues i de paquets (OBS/OPS), són dues de les tecnologies proposades. Aquesta tesi contribueix amb tres arquitectures de xarxa destinades a millorar el transport de dades sub-longitud d’ona. En primer lloc, aprofundim en la naturalesa sense connexió en OBS. En aquest cas, la xarxa incrementa el seu dinamisme a causa de les transmissions a ràfega. A més, les col·lisions entre ràfegues degraden el rendiment de la xarxa fins i tot a càrregues molt baixes. Per fer front a aquestes col·lisions, es proposa un esquema de resolució de col·lisions pro actiu basat en un algorisme d’encaminament i assignació de longitud d’ona (RWA) que balanceja de forma automàtica i distribuïda la càrrega en la xarxa. En aquest protocol, el RWA i la transmissió de ràfegues es basen en l’explotació i exploració de regles de commutació que incorporen informació sobre contencions i encaminament. Per donar suport a aquesta arquitectura, s’utilitzen dos tipus de paquets de control per a l’encaminament de les ràfegues i l’actualització de les regles de commutació, respectivament. Per analitzar els beneficis del nou algorisme, s’utilitzen quatre topologies de xarxa diferents. Els resultats indiquen que el mètode proposat millora en diferents marges la resta d’algorismes RWA en funció de la topologia i sense penalitzar altres paràmetres com el retard extrem a extrem. La segona contribució proposa una arquitectura híbrida sense i orientada a connexió sobre la base d’un protocol de control d’accés al medi (MAC) per a xarxes OBS (DAOBS). El MAC ofereix dos mètodes d’accés: arbitratge de cua (QA) per a la transmissió de ràfegues sense connexió, i pre-arbitratge (PA) per serveis TDM orientats a connexió. Aquesta arquitectura permet una àmplia gamma d’aplicacions sensibles al retard i al bloqueig. Els resultats avaluats a través de simulacions mostren que en l’accés QA, les ràfegues de més alta prioritat tenen garantides zero pèrdues i latències d’accés molt baixes. Pel que fa a l’accés PA, es reporta que la duplicació de la càrrega TDM augmenta en més d’un ordre la probabilitat de bloqueig, però sense afectar en la mateixa mesura les ràfegues sense connexió. En aquest capítol també es tracten dos dels problemes relacionats amb l’arquitectura DAOBS i el seu funcionament. En primer lloc, es proposa un model matemàtic per aproximar el retard d’accés inferior i superior com a conseqüència de l’accés QA. En segon lloc, es formula matemàticament la generació i optimització de les topologies virtuals que suporten el protocol per a l’escenari amb tràfic estàtic. Finalment, l’última contribució explora els beneficis d’una arquitectura de xarxa òptica per temps compartit (TSON) basada en elements de càlcul de camins (PCE) centralitzats per tal d’evitar col·lisions en la xarxa. Aquesta arquitectura permet garantir l’aprovisionament orientat a connexió de canals sub-longitud d’ona. En aquest capítol proposem i simulem tres arquitectures GMPLS/PCE/TSON. A causa del enfocament centralitzat, el rendiment de la xarxa depèn en gran mesura de l’assignació i aprovisionament de les connexions. Amb aquesta finalitat, es proposen diferents algorismes d’assignació de ranures temporals i es comparen amb les corresponents formulacions de programació lineal (ILP) per al cas estàtic. Per al cas de tràfic dinàmic, proposem i avaluem mitjançant simulació diferents heurístiques. Els resultats mostren els beneficis de proporcionar flexibilitat en els dominis temporal i freqüencial a l’hora d’assignar les ranures temporals.The rapid evolving Internet and the broad range of new data applications (e.g., multimedia, video-conference, online gaming, etc.) is fostering revolutionary changes in the way we communicate. In addition, some of these applications demand for unprecedented amounts of bandwidth resources with diverse quality of service (QoS). The development of wavelength division multiplexing (WDM) in the 90's made very cost-effective the availability of bandwidth. Nowadays, optical circuit switching technologies are predominant in the core enabling the set up of lightpaths across the network. However, full-wavelength lightpath granularity is too coarse, which results to be inefficient for provisioning sub-wavelength channels. As remarked by the research community, an open issue in optical networking is increasing the protocol transparency as well as provisioning true dynamic bandwidth allocation at the network level. To this end, new architectures are required. Optical burst/packet switching (OBS/OPS) are two such proposed technologies under investigation. This thesis contributes with three network architectures which aim at improving the sub-wavelength data transport from different perspectives. First, we gain insight into the connectionless nature of OBS. Here, the network dynamics are increased due to the short-lived burst transmissions. Moreover, burst contentions degrade the performance even at very low loads. To cope with them, we propose a proactive resolution scheme by means of a distributed auto load-balancing routing and wavelength assignment (RWA) algorithm for wavelength-continuity constraint networks. In this protocol, the RWA and burst forwarding is based on the exploitation and exploration of switching rule concentration values that incorporate contention and forwarding desirability information. To support such architecture, forward and backward control packets are used in the burst forwarding and updating rules, respectively. In order to analyze the benefits of the new algorithm, four different network topologies are used. Results indicate that the proposed method outperforms the rest of tested RWA algorithms at various margins depending on the topology without penalizing other parameters such as end-to-end delay. The second contribution proposes a hybrid connectionless and connection-oriented architecture based on a medium access control (MAC) protocol for OBS networks (DAOBS). The MAC provides two main access mechanisms: queue arbitrated (QA) for connectionless bursts and pre-arbitrated (PA) for TDM connection-oriented services. Such an architecture allows for a broad range of delay-sensitive applications or guaranteed services. Results evaluated through simulations show that in the QA access mode highest priority bursts are guaranteed zero losses and very low access latencies. Regarding the PA mode, we report that doubling the offered TDM traffic load increases in more than one order their connection blocking, slightly affecting the blocking of other connectionless bursts. In this chapter, we also tackle two of the issues related with the DAOBS architecture and its operation. Firstly, we model mathematically the lower and upper approximations of the access delay as a consequence of the connectionless queue arbitrated access. Secondly, we formulate the generation of the virtual light-tree overlay topology for the static traffic case.Postprint (published version

    Effect Of Reconfiguration On Ip Packet Traffic In Wdm Networks

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Günümüzde iletişim ağlarına erişen insan sayısı ve iletişim uygulamalarının ihtiyaç duyduğu band genişliği ihtiyacı hızla artmaya devam etmektedir. Artan trafik istekleri daha geniş band genişliği kullanımına olanak verebilen optik iletişim ağlarının tasarımını tetiklemektedir. Bir veya daha fazla sayıda optik fiberi kapsayabilen bir ışıkyolu alt katmanda yer alan optik altyapının üzerinde iletişim kanalları sağlamaktadır. Sanal topoloji tasarımı, verilen bir trafik matrisine göre bir grup ışık yolunun kurulması olarak tanımlanabilir. Trafikte meydana gelecek bir değişiklik yeniden konfigürasyon kararının alınmasına neden olabilir. Sanal topoloji yeniden konfigürasyonu, hem yeni sanal topolojinin belirlenmesini hem de bu yeni topolojiye geçişi içermektedir. Bu tez çalışmasında IP/WDM ağlarda sanal topoloji yeniden konfigürasyonunun IP paket trafiği üzerindeki etkileri incelenmiştir. Çalışma kapsamında, çeşitli yeniden kofigürasyon algoritmaları gerçeklenmiş ve Fishnet tabanlı bir IP simülatörü üzerinde test edilmiştir. Gerçeklenen sanal topoloji tasarım algoritmalarına ait paket gecikmeleri/kayıpları incelenmiş ve algoritmaların başarımları karşılaştırılmıştır.Today, both the amount of people accessing communication networks and new communication applications which require high data transfer rates are exponentially increasing. Growing traffic demands triggered the design of optical communication networks which will be able to provide larger bandwidth utilization. A lightpath, which can span multiple fiber links, provides communication channels over the underlying optical communication infrastructure. Virtual Topology Design (VTD) means establishment of a set of lightpaths under a given traffic pattern. A change in traffic pattern may trigger reconfiguration decision. Virtual Topology Reconfiguration (VTR) contains determination of a new virtual topology and migration between the old and new virtual topologies. In this thesis, the effects of virtual topology reconfiguration on Internet Protocol (IP) packet traffic on IP over WDM networks were studied. Various reconfiguration algorithms were implemented and tested on a Fishnet based IP simulator. Packet delays/losses are investigated during reconfiguration procedure for performance comparison of implemented reconfiguration algorithms.Yüksek LisansM.Sc

    Optimised Design and Analysis of All-Optical Networks

    Get PDF
    This PhD thesis presents a suite of methods for optimising design and for analysing blocking probabilities of all-optical networks. It thus contributes methodical knowledge to the field of computer assisted planning of optical networks. A two-stage greenfield optical network design optimiser is developed, based on shortest-path algorithms and a comparatively new metaheuristic called simulated allocation. It is able to handle design of all-optical mesh networks with optical cross-connects, considers duct as well as fibre and node costs, and can also design protected networks. The method is assessed through various experiments and is shown to produce good results and to be able to scale up to networks of realistic sizes. A novel method, subpath wavelength grouping, for routing connections in a multigranular all-optical network where several wavelengths can be grouped and switched at band and fibre level is presented. The method uses an unorthodox routing strategy focusing on common subpaths rather than individual connections, and strives to minimise switch port count as well as fibre usage. It is shown to produce cheaper network designs than previous methods when fibre costs are comparatively high. A new optical network concept, the synchronous optical hierarchy, is proposed, in which wavelengths are subdivided into timeslots to match the traffic granularity. Various theoretical properties of this concept are investigated and compared in simulation studies. An integer linear programming model for optical ring network design is presented. Manually designed real world ring networks are studied and it is found that the model can lead to cheaper network design. Moreover, ring and mesh network architectures are compared using real world costs, and it is found that optical cros..
    corecore