7,183 research outputs found

    Conceptual, Impact-Based Publications Recommendations

    Get PDF
    CiteSeerx is a digital library for scientific publications by computer science researchers. It also functions as a search engine with several features including autonomous citation indexing, automatic metadata extraction, full-text indexing and reference linking. Users are able to retrieve relevant documents from the CiteSeerx database directly using search queries and will further benefit if the system suggests document recommendations to the user based on their preferences and search history. Therefore, recommender systems were initially developed and continue to evolve to recommend more relevant documents to the CiteSeerx users. In this thesis, we introduce the Conceptual, Impact-Based Recommender (CIBR), a hybrid recommender system, derived from the previously implemented conceptual recommender system in CiteSeerx. The Conceptual recommender system utilized the user\u27s top weighted concepts to recommend relevant documents to the users. Our hybrid recommender system, CIBR, considers the impact factor in addition to the top weighted concepts for generating recommendations for the user. The impact factor of a document is determined by using the author\u27s h-index of the publication. A survey was conducted to evaluate the efficiency of our hybrid system and this study shows that the CIBR system generates more relevant documents as compared to those recommended by the conceptual recommender system

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    A Systematic Review of Automated Query Reformulations in Source Code Search

    Full text link
    Fixing software bugs and adding new features are two of the major maintenance tasks. Software bugs and features are reported as change requests. Developers consult these requests and often choose a few keywords from them as an ad hoc query. Then they execute the query with a search engine to find the exact locations within software code that need to be changed. Unfortunately, even experienced developers often fail to choose appropriate queries, which leads to costly trials and errors during a code search. Over the years, many studies attempt to reformulate the ad hoc queries from developers to support them. In this systematic literature review, we carefully select 70 primary studies on query reformulations from 2,970 candidate studies, perform an in-depth qualitative analysis (e.g., Grounded Theory), and then answer seven research questions with major findings. First, to date, eight major methodologies (e.g., term weighting, term co-occurrence analysis, thesaurus lookup) have been adopted to reformulate queries. Second, the existing studies suffer from several major limitations (e.g., lack of generalizability, vocabulary mismatch problem, subjective bias) that might prevent their wide adoption. Finally, we discuss the best practices and future opportunities to advance the state of research in search query reformulations.Comment: 81 pages, accepted at TOSE
    • …
    corecore