137,294 research outputs found

    Development and Use of Engineering Standards for Computational Fluid Dynamics for Complex Aerospace Systems

    Get PDF
    Computational fluid dynamics (CFD) and other advanced modeling and simulation (M&S) methods are increasingly relied on for predictive performance, reliability and safety of engineering systems. Analysts, designers, decision makers, and project managers, who must depend on simulation, need practical techniques and methods for assessing simulation credibility. The AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998 (2002)), originally published in 1998, was the first engineering standards document available to the engineering community for verification and validation (V&V) of simulations. Much progress has been made in these areas since 1998. The AIAA Committee on Standards for CFD is currently updating this Guide to incorporate in it the important developments that have taken place in V&V concepts, methods, and practices, particularly with regard to the broader context of predictive capability and uncertainty quantification (UQ) methods and approaches. This paper will provide an overview of the changes and extensions currently underway to update the AIAA Guide. Specifically, a framework for predictive capability will be described for incorporating a wide range of error and uncertainty sources identified during the modeling, verification, and validation processes, with the goal of estimating the total prediction uncertainty of the simulation. The Guide's goal is to provide a foundation for understanding and addressing major issues and concepts in predictive CFD. However, this Guide will not recommend specific approaches in these areas as the field is rapidly evolving. It is hoped that the guidelines provided in this paper, and explained in more detail in the Guide, will aid in the research, development, and use of CFD in engineering decision-making

    Identifying Challenges in BRM Implementations Regarding the Verification and Validation Capabilities at Governmental Institutions

    Get PDF
    Since an increasing amount of business rules management solutions are utilized, organizations search for guidance to design such solutions. As the amount of BRMS-implementations increase, the amount of implementation challenges experienced in practice increase as well. Therefore, it is of importance to gain insights into these implementation challenges which can help guide future implementations of BRMS. Smit, Zoet and Versendaal (2017) described the challenges regarding elicitation, design and specification of business decisions and business logic; in this study, we identify the main challenges regarding 1) the verification and 2) validation of business decisions and business logic in the Dutch governmental context. Building on the collection and the analysis of two three-round focus groups and two three-round Delphi studies we report on the 17 challenges experienced by the participants. The presented results provide a grounded basis from which empirical and practical research on best practices can be further explored

    Effective Systems Engineering Training

    Get PDF
    The need for systems engineering training is steadily increasing, as both the defense and commercial markets take on more complex "systems of systems" work. A variety of universities and commercial training vendors have assembled courses of various lengths, format, and content to meet this need. This presentation looks at the requirements for systems engineering training, and discusses techniques for increasing its effectiveness. Several format and content options for meeting these requirements are compared and contrasted, and an experience-based curriculum is shown

    Assessment of sensor performance

    Get PDF
    There is an international commitment to develop a comprehensive, coordinated and sustained ocean observation system. However, a foundation for any observing, monitoring or research effort is effective and reliable in situ sensor technologies that accurately measure key environmental parameters. Ultimately, the data used for modelling efforts, management decisions and rapid responses to ocean hazards are only as good as the instruments that collect them. There is also a compelling need to develop and incorporate new or novel technologies to improve all aspects of existing observing systems and meet various emerging challenges. Assessment of Sensor Performance was a cross-cutting issues session at the international OceanSensors08 workshop in Warnemünde, Germany, which also has penetrated some of the papers published as a result of the workshop (Denuault, 2009; Kröger et al., 2009; Zielinski et al., 2009). The discussions were focused on how best to classify and validate the instruments required for effective and reliable ocean observations and research. The following is a summary of the discussions and conclusions drawn from this workshop, which specifically addresses the characterisation of sensor systems, technology readiness levels, verification of sensor performance and quality management of sensor systems
    • …
    corecore