905 research outputs found

    Remote sensing image fusion via compressive sensing

    Get PDF
    In this paper, we propose a compressive sensing-based method to pan-sharpen the low-resolution multispectral (LRM) data, with the help of high-resolution panchromatic (HRP) data. In order to successfully implement the compressive sensing theory in pan-sharpening, two requirements should be satisfied: (i) forming a comprehensive dictionary in which the estimated coefficient vectors are sparse; and (ii) there is no correlation between the constructed dictionary and the measurement matrix. To fulfill these, we propose two novel strategies. The first is to construct a dictionary that is trained with patches across different image scales. Patches at different scales or equivalently multiscale patches provide texture atoms without requiring any external database or any prior atoms. The redundancy of the dictionary is removed through K-singular value decomposition (K-SVD). Second, we design an iterative l1-l2 minimization algorithm based on alternating direction method of multipliers (ADMM) to seek the sparse coefficient vectors. The proposed algorithm stacks missing high-resolution multispectral (HRM) data with the captured LRM data, so that the latter is used as a constraint for the estimation of the former during the process of seeking the representation coefficients. Three datasets are used to test the performance of the proposed method. A comparative study between the proposed method and several state-of-the-art ones shows its effectiveness in dealing with complex structures of remote sensing imagery

    Evaluation of Pan-Sharpening Techniques Using Lagrange Optimization

    Get PDF
    Earth’s observation satellites, such as IKONOS, provide simultaneously multispectral and panchromatic images. A multispectral image comes with a lower spatial and higher spectral resolution in contrast to a panchromatic image which usually has a high spatial and a low spectral resolution. Pan-sharpening represents a fusion of these two complementary images to provide an output image that has both spatial and spectral high resolutions. The objective of this paper is to propose a new method of pan-sharpening based on pixel-level image manipulation and to compare it with several state-of-art pansharpening methods using different evaluation criteria.  The paper presents an image fusion method based on pixel-level optimization using the Lagrange multiplier. Two cases are discussed: (a) the maximization of spectral consistency and (b) the minimization of the variance difference between the original data and the computed data. The paper compares the results of the proposed method with several state-of-the-art pan-sharpening methods. The performance of the pan-sharpening methods is evaluated qualitatively and quantitatively using evaluation criteria, such as the Chi-square test, RMSE, SNR, SD, ERGAS, and RASE. Overall, the proposed method is shown to outperform all the existing methods

    5G Enabled Moving Robot Captured Image Encryption with Principal Component Analysis Method

    Get PDF
    Estimating the captured image of moving robots is very difficult. These images are vital in analyzing earth's surface objects for many applications like studying environmental conditions, Land use and Land Cover changes, and change detection studies of worldwide change. Multispectral robot-captured images have a massive amount of low-resolution data, which is lost due to a lack of capture efficiency due to artificial and atmospheric reasons. The image transformation is required in a 5G network with effective transmission by reducing noise, inconsistent lighting, and low resolution, degrading image quality. In this paper, the authors proposed the machine learning dimensionality reduction technique i.e. Principle Component Analysis (PCA) and which is used for metastasizing the 5 G-enabled moving robot captured image to enrich the image's visual perception to analyze the exact information of global or local data. The encryption algorithm implanted for data reduction and transmission over the 5G network gives sophisticated results compared with other standard methods. This proposed algorithm gives better performance in developing data reduction, network convergence speed, reduces the training time for object classification, and improves accuracy for multispectral moving robot-captured images by the support of 5G network

    Joint demosaicing and fusion of multiresolution coded acquisitions: A unified image formation and reconstruction method

    Full text link
    Novel optical imaging devices allow for hybrid acquisition modalities such as compressed acquisitions with locally different spatial and spectral resolutions captured by a single focal plane array. In this work, we propose to model the capturing system of a multiresolution coded acquisition (MRCA) in a unified framework, which natively includes conventional systems such as those based on spectral/color filter arrays, compressed coded apertures, and multiresolution sensing. We also propose a model-based image reconstruction algorithm performing a joint demosaicing and fusion (JoDeFu) of any acquisition modeled in the MRCA framework. The JoDeFu reconstruction algorithm solves an inverse problem with a proximal splitting technique and is able to reconstruct an uncompressed image datacube at the highest available spatial and spectral resolution. An implementation of the code is available at https://github.com/danaroth83/jodefu.Comment: 15 pages, 7 figures; regular pape

    A review of image fusion algorithms based on the Super-Resolution paradigm

    Get PDF
    A critical analysis of remote sensing image fusion methods based on the super-resolution (SR) paradigm is presented in this paper. Very recent algorithms have been selected among the pioneering studies adopting a new methodology and the most promising solutions. After introducing the concept of super-resolution and modeling the approach as a constrained optimization problem, different SR solutions for spatio-temporal fusion and pan-sharpening are reviewed and critically discussed. Concerning pan-sharpening, the well-known, simple, yet effective, proportional additive wavelet in the luminance component (AWLP) is adopted as a benchmark to assess the performance of the new SR-based pan-sharpening methods. The widespread quality indexes computed at degraded resolution, with the original multispectral image used as the reference, i.e., SAM (Spectral Angle Mapper) and ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), are finally presented. Considering these results, sparse representation and Bayesian approaches seem far from being mature to be adopted in operational pan-sharpening scenarios

    Guidelines for Best Practice and Quality Checking of Ortho Imagery

    Get PDF
    For almost 10 years JRC's ÂżGuidelines for Best Practice and Quality Control of Ortho ImageryÂż has served as a reference document for the production of orthoimagery not only for the purposes of CAP but also for many medium-to-large scale photogrammetric applications. The aim is to provide the European Commission and the remote sensing user community with a general framework of the best approaches for quality checking of orthorectified remotely sensed imagery, and the expected best practice, required to achieve good results. Since the last major revision (2003) the document was regularly updated in order to include state-of-the-art technologies. The major revision of the document was initiated last year in order to consolidate the information that was introduced to the document in the last five years. Following the internal discussion and the outcomes of the meeting with an expert panel it was decided to adopt as possible a process-based structure instead of a more sensor-based used before and also to keep the document as much generic as possible by focusing on the core aspects of the photogrammetric process. Additionally to any structural changes in the document new information was introduced mainly concerned with image resolution and radiometry, digital airborne sensors, data fusion, mosaicking and data compression. The Guidelines of best practice is used as the base for our work on the definition of technical specifications for the orthoimagery. The scope is to establish a core set of measures to ensure sufficient image quality for the purposes of CAP and particularly for the Land Parcel Identification System (PLIS), and also to define the set of metadata necessary for data documentation and overall job tracking.JRC.G.3-Agricultur
    • …
    corecore