2,553 research outputs found

    \u3cem\u3eGRASP News\u3c/em\u3e, Volume 8, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory. Edited by Thomas Lindsay

    Asimovian Adaptive Agents

    Full text link
    The goal of this research is to develop agents that are adaptive and predictable and timely. At first blush, these three requirements seem contradictory. For example, adaptation risks introducing undesirable side effects, thereby making agents' behavior less predictable. Furthermore, although formal verification can assist in ensuring behavioral predictability, it is known to be time-consuming. Our solution to the challenge of satisfying all three requirements is the following. Agents have finite-state automaton plans, which are adapted online via evolutionary learning (perturbation) operators. To ensure that critical behavioral constraints are always satisfied, agents' plans are first formally verified. They are then reverified after every adaptation. If reverification concludes that constraints are violated, the plans are repaired. The main objective of this paper is to improve the efficiency of reverification after learning, so that agents have a sufficiently rapid response time. We present two solutions: positive results that certain learning operators are a priori guaranteed to preserve useful classes of behavioral assurance constraints (which implies that no reverification is needed for these operators), and efficient incremental reverification algorithms for those learning operators that have negative a priori results

    Domain-independent exception handling services that increase robustness in open multi-agent systems

    Get PDF
    Title from cover. "May 2000."Includes bibliographical references (p. 17-23).Mark Klein and Chrysanthos Dellarocas

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous Agents

    Get PDF
    We present a novel method for guiding a large-scale swarm of autonomous agents into a desired formation shape in a distributed and scalable manner. Our Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) algorithm adopts an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled. Each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain. These time-varying Markov matrices are constructed by each agent in real-time using the feedback from the current swarm distribution, which is estimated in a distributed manner. The PSG-IMC algorithm minimizes the expected cost of the transitions per time instant, required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. We demonstrate the effectiveness of this proposed swarm guidance algorithm by using results of numerical simulations and hardware experiments with multiple quadrotors.Comment: Submitted to IEEE Transactions on Robotic

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Neural Network Observer-Based Prescribed-Time Fault-Tolerant Tracking Control for Heterogeneous Multiagent Systems With a Leader of Unknown Disturbances

    Get PDF
    This study investigates the prescribed-time leader-follower formation strategy for heterogeneous multiagent sys-tems including unmanned aerial vehicles and unmanned ground vehicles under time-varying actuator faults and unknown dis-turbances based on adaptive neural network observers and backstepping method. Compared with the relevant works, the matching and mismatched disturbances of the leader agent are further taken into account in this study. A distributed fixed-time observer is developed for follower agents in order to timely obtain the position and velocity states of the leader, in which neural networks are employed to approximate the unknown disturbances. Furthermore, the actual sensor limitations make each follower only affected by local information and measurable local states. As a result, another fixed-time neural network observer is proposed to obtain the unknown states and the complex uncertainties. Then, a backstepping prescribed-time fault-tolerant formation controller is constructed by utilizing the estimations, which not only guarantees that the multiagent systems realize the desired formation configuration in a user-assignable finite time, but also ensures that the control action can be smooth everywhere. Finally, simulation examples are designed to testify the validity of the developed theoretical method

    Measuring plan coverage and overlap for agent reasoning

    Get PDF
    In Belief Desire Intention (BDI) agent systems it is usual for goals to have a number of plans that are possible ways of achieving the goal, applicable in di erent situations, usually captured by a context condition. In Agent Oriented Software Engineering it has been suggested that a designer should be conscious of whether a goal has complete coverage, that is, is there some plan that is applicable for every situation. Similarly a designer should be conscious of overlap, that is, for a given goal, are there situations where more than one plan could be applicable for achieving that goal. In this paper we further develop these notions in two ways, and then describe how they can be used both in agent reasoning and agent system development. Firstly we replace the boolean value for basic coverage and overlap with numerical measures, and explain how these may be calculated. Secondly we describe a measure that combines these basic measures, with the characteristics of the coverage/overlap in the goal-plan tree below a given goal. We then describe how these domain independent measures can be used for both plan selection and intention selection, as well as for guidance in agent system development

    Real-time co-ordinated resource management in a computational enviroment

    Get PDF
    Design co-ordination is an emerging engineering design management philosophy with its emphasis on timeliness and appropriateness. Furthermore, a key element of design coordination has been identified as resource management, the aim of which is to facilitate the optimised use of resources throughout a dynamic and changeable process. An approach to operational design co-ordination has been developed, which incorporates the appropriate techniques to ensure that the aim of co-ordinated resource management can be fulfilled. This approach has been realised within an agent-based software system, called the Design Coordination System (DCS), such that a computational design analysis can be managed in a coherent and co-ordinated manner. The DCS is applied to a computational analysis for turbine blade design provided by industry. The application of the DCS involves resources, i.e. workstations within a computer network, being utilised to perform the computational analysis involving the use of a suite of software tools to calculate stress and vibration characteristics of turbine blades. Furthermore, the application of the system shows that the utilisation of resources can be optimised throughout the computational design analysis despite the variable nature of the computer network
    • 

    corecore