370,677 research outputs found

    Automatic vehicle tracking and recognition from aerial image sequences

    Full text link
    This paper addresses the problem of automated vehicle tracking and recognition from aerial image sequences. Motivated by its successes in the existing literature focus on the use of linear appearance subspaces to describe multi-view object appearance and highlight the challenges involved in their application as a part of a practical system. A working solution which includes steps for data extraction and normalization is described. In experiments on real-world data the proposed methodology achieved promising results with a high correct recognition rate and few, meaningful errors (type II errors whereby genuinely similar targets are sometimes being confused with one another). Directions for future research and possible improvements of the proposed method are discussed

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    SBNet: Sparse Blocks Network for Fast Inference

    Full text link
    Conventional deep convolutional neural networks (CNNs) apply convolution operators uniformly in space across all feature maps for hundreds of layers - this incurs a high computational cost for real-time applications. For many problems such as object detection and semantic segmentation, we are able to obtain a low-cost computation mask, either from a priori problem knowledge, or from a low-resolution segmentation network. We show that such computation masks can be used to reduce computation in the high-resolution main network. Variants of sparse activation CNNs have previously been explored on small-scale tasks and showed no degradation in terms of object classification accuracy, but often measured gains in terms of theoretical FLOPs without realizing a practical speed-up when compared to highly optimized dense convolution implementations. In this work, we leverage the sparsity structure of computation masks and propose a novel tiling-based sparse convolution algorithm. We verified the effectiveness of our sparse CNN on LiDAR-based 3D object detection, and we report significant wall-clock speed-ups compared to dense convolution without noticeable loss of accuracy.Comment: 10 pages, CVPR 201
    • …
    corecore