29 research outputs found

    MODELLING SINGLE TREE STRUCTURE WITH TERRESTRIAL LASER SCANNER

    Get PDF

    A new method to estimate branch biomass from terrestrial laser scanning data by bridging tree structure models

    Get PDF
    Background and Aims Branch biomass and other attributes are important for estimating the carbon budget of forest stands and characterizing crown structure. As destructive measuring is time-consuming and labour-intensive, terrestrial laser scanning (TLS) as a solution has been used to estimate branch biomass quickly and non-destructively. However, branch information extraction from TLS data alone is challenging due to occlusion and other defects, especially for estimating individual branch attributes in coniferous trees. Methods This study presents a method, entitled TSMtls, to estimate individual branch biomass non-destructively and accurately by combining tree structure models and TLS data. The TSMtls method constructs the stem-taper curve from TLS data, then uses tree structure models to determine the number, basal area and biomass of individual branches at whorl level. We estimated the tree structural model parameters from 122 destructively measured Scots pine (Pinus sylvestris) trees and tested the method on six Scots pine trees that were first TLS-scanned and later destructively measured. Additionally, we estimated the branch biomass using other TLS-based approaches for comparison. Key Results Tree-level branch biomass estimates derived from TSMtls showed the best agreement with the destructive measurements [coefficient of variation of root mean square error (CV-RMSE) = 9.66 % and concordance correlation coefficient (CCC) = 0.99], outperforming the other TLS-based approaches (CV-RMSE 12.97-57.45 % and CCC 0.43-0.98 ). Whorl-level individual branch attributes estimates produced from TSMtls showed more accurate results than those produced from TLS data directly. Conclusions The results showed that the TSMtls method proposed in this study holds promise for extension to more species and larger areas.Peer reviewe

    Quantitative Assessment of Scots Pine (Pinus Sylvestris L.) Whorl Structure in a Forest Environment Using Terrestrial Laser Scanning

    Get PDF
    State-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such information is currently unavailable at the wood procurement planning phase. The first step toward more detailed evaluation of standing timber is to introduce a method that produces similar wood quality indicators in standing forests as those currently used in sawmills. Our aim was to develop a quantitative method to detect and model branches from terrestrial laser scanning (TLS) point clouds data of trees in a forest environment. The test data were obtained from 158 Scots pines (Pinus sylvestris L.) in six mature forest stands. The method was evaluated for the accuracy of the following branch parameters: Number of whorls per tree and for every whorl, the maximum branch diameter and the branch insertion angle associated with it. The analysis concentrated on log-sections (stem diameter > 15 cm) where the branches most affect wood's value added. The quantitative whorl detection method had an accuracy of 69.9% and a 1.9% false positive rate. The estimates of the maximum branch diameters and the corresponding insertion angles for each whorl were underestimated by 0.34 cm (11.1%) and 0.67 degrees (1.0%), with a root-mean-squared error of 1.42 cm (46.0%) and 17.2 degrees (26.3%), respectively. Distance from the scanner, occlusion, and wind were the main external factors that affect the method's functionality. Thus, the completeness and point density of the data should be addressed when applying TLS point cloud based tree models to assess branch parameters.Peer reviewe

    Assessing branching structure for biomass and wood quality estimation using terrestrial laser scanning point clouds

    Get PDF
    Terrestrial laser scanning (TLS) accompanied by quantitative tree-modeling algorithms can potentially acquire branching data non-destructively from a forest environment and aid the development and calibration of allometric crown biomass and wood quality equations for species and geographical regions with inadequate models. However, TLS's coverage in capturing individual branches still lacks evaluation. We acquired TLS data from 158 Scots pine (Pinus sylvestris L.) trees and investigated the performance of a quantitative branch detection and modeling approach for extracting key branching parameters, namely the number of branches, branch diameter (b(d)) and branch insertion angle (b) in various crown sections. We used manual point cloud measurements as references. The accuracy of quantitative branch detections decreased significantly above the live crown base height, principally due to the increasing scanner distance as opposed to occlusion effects caused by the foliage. b(d) was generally underestimated, when comparing to the manual reference, while b was estimated accurately: tree-specific biases were 0.89cm and 1.98 degrees, respectively. Our results indicate that full branching structure remains challenging to capture by TLS alone. Nevertheless, the retrievable branching parameters are potential inputs into allometric biomass and wood quality equations.Peer reviewe

    A Clustering Framework for Monitoring Circadian Rhythm in Structural Dynamics in Plants From Terrestrial Laser Scanning Time Series

    Get PDF
    Terrestrial Laser Scanning (TLS) can be used to monitor plant dynamics with a frequency of several times per hour and with sub-centimeter accuracy, regardless of external lighting conditions. TLS point cloud time series measured at short intervals produce large quantities of data requiring fast processing techniques. These must be robust to the noise inherent in point clouds. This study presents a general framework for monitoring circadian rhythm in plant movements from TLS time series. Framework performance was evaluated using TLS time series collected from two Norway maples (Acer platanoides) and a control target, a lamppost. The results showed that the processing framework presented can capture a plant's circadian rhythm in crown and branches down to a spatial resolution of 1 cm. The largest movements in both Norway maples were observed before sunrise and at their crowns' outer edges. The individual cluster movements were up to 0.17 m (99th percentile) for the taller Norway maple and up to 0.11 m (99th percentile) for the smaller tree from their initial positions before sunset

    MASSIVE-SCALE TREE MODELLING FROM TLS DATA

    Get PDF

    A Clustering Framework for Monitoring Circadian Rhythm in Structural Dynamics in Plants from Terrestrial Laser Scanning Time Series

    Get PDF
    Terrestrial Laser Scanning (TLS) can be used to monitor plant dynamics with a frequency of several times per hour and with sub-centimeter accuracy, regardless of external lighting conditions. TLS point cloud time series measured at short intervals produce large quantities of data requiring fast processing techniques. These must be robust to the noise inherent in point clouds. This study presents a general framework for monitoring circadian rhythm in plant movements from TLS time series. Framework performance was evaluated using TLS time series collected from two Norway maples (Acer platanoides) and a control target, a lamppost. The results showed that the processing framework presented can capture a plant's circadian rhythm in crown and branches down to a spatial resolution of 1 cm. The largest movements in both Norway maples were observed before sunrise and at their crowns' outer edges. The individual cluster movements were up to 0.17 m (99th percentile) for the taller Norway maple and up to 0.11 m (99th percentile) for the smaller tree from their initial positions before sunset

    Forest structure from terrestrial laser scanning – in support of remote sensing calibration/validation and operational inventory

    Get PDF
    Forests are an important part of the natural ecosystem, providing resources such as timber and fuel, performing services such as energy exchange and carbon storage, and presenting risks, such as fire damage and invasive species impacts. Improved characterization of forest structural attributes is desirable, as it could improve our understanding and management of these natural resources. However, the traditional, systematic collection of forest information – dubbed “forest inventory” – is time-consuming, expensive, and coarse when compared to novel 3-D measurement technologies. Remote sensing estimates, on the other hand, provide synoptic coverage, but often fail to capture the fine- scale structural variation of the forest environment. Terrestrial laser scanning (TLS) has demonstrated a potential to address these limitations, but its operational use has remained limited due to unsatisfactory performance characteristics vs. budgetary constraints of many end-users. To address this gap, my dissertation advanced affordable mobile laser scanning capabilities for operational forest structure assessment. We developed geometric reconstruction of forest structure from rapid-scan, low-resolution point cloud data, providing for automatic extraction of standard forest inventory metrics. To augment these results over larger areas, we designed a view-invariant feature descriptor to enable marker-free registration of TLS data pairs, without knowledge of the initial sensor pose. Finally, a graph-theory framework was integrated to perform multi-view registration between a network of disconnected scans, which provided improved assessment of forest inventory variables. This work addresses a major limitation related to the inability of TLS to assess forest structure at an operational scale, and may facilitate improved understanding of the phenomenology of airborne sensing systems, by providing fine-scale reference data with which to interpret the active or passive electromagnetic radiation interactions with forest structure. Outputs are being utilized to provide antecedent science data for NASA’s HyspIRI mission and to support the National Ecological Observatory Network’s (NEON) long-term environmental monitoring initiatives

    Fine-scale Inventory of Forest Biomass with Ground-based LiDAR

    Get PDF
    Biomass measurement provides a baseline for ecosystem valuation required by modern forest management. The advent of ground-based LiDAR technology, renowned for 3D sampling resolution, has been altering the routines of biomass inventory. The thesis develops a set of innovative approaches in support of fine-scale biomass inventory, including automatic extraction of stem statistics, robust delineation of plot biomass components, accurate classification of individual tree species, and repeatable scanning of plot trees using a lightweight scanning system. Main achievements in terms of accuracy are a relative root mean square error of 11% for stem volume extraction, a mean classification accuracy of 0.72 for plot wood components, and a classification accuracy of 92% among seven tree species. The results indicate the technical feasibility of biomass delineation and monitoring from plot-level and multi-species point cloud datasets, whereas point occlusion and lack of fine-scale validation dataset are current challenges for biomass 3D analysis from ground.S.G.S. International Tuition Award from the University of Lethbridge The Dean's Scholarship from the University of Lethbridge Campus Alberta Innovates Program NSERC Discovery Grants Progra
    corecore