4,705 research outputs found

    Recent patents on computational intelligence

    Get PDF

    The World of Combinatorial Fuzzy Problems and the Efficiency of Fuzzy Approximation Algorithms

    Full text link
    We re-examine a practical aspect of combinatorial fuzzy problems of various types, including search, counting, optimization, and decision problems. We are focused only on those fuzzy problems that take series of fuzzy input objects and produce fuzzy values. To solve such problems efficiently, we design fast fuzzy algorithms, which are modeled by polynomial-time deterministic fuzzy Turing machines equipped with read-only auxiliary tapes and write-only output tapes and also modeled by polynomial-size fuzzy circuits composed of fuzzy gates. We also introduce fuzzy proof verification systems to model the fuzzification of nondeterminism. Those models help us identify four complexity classes: Fuzzy-FPA of fuzzy functions, Fuzzy-PA and Fuzzy-NPA of fuzzy decision problems, and Fuzzy-NPAO of fuzzy optimization problems. Based on a relative approximation scheme targeting fuzzy membership degree, we formulate two notions of "reducibility" in order to compare the computational complexity of two fuzzy problems. These reducibility notions make it possible to locate the most difficult fuzzy problems in Fuzzy-NPA and in Fuzzy-NPAO.Comment: A4, 10pt, 10 pages. This extended abstract already appeared in the Proceedings of the Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS 2014) and 15th International Symposium on Advanced Intelligent Systems (ISIS 2014), December 3-6, 2014, Institute of Electrical and Electronics Engineers (IEEE), pp. 29-35, 201

    Eigenlogic: a Quantum View for Multiple-Valued and Fuzzy Systems

    Full text link
    We propose a matrix model for two- and many-valued logic using families of observables in Hilbert space, the eigenvalues give the truth values of logical propositions where the atomic input proposition cases are represented by the respective eigenvectors. For binary logic using the truth values {0,1} logical observables are pairwise commuting projectors. For the truth values {+1,-1} the operator system is formally equivalent to that of a composite spin 1/2 system, the logical observables being isometries belonging to the Pauli group. Also in this approach fuzzy logic arises naturally when considering non-eigenvectors. The fuzzy membership function is obtained by the quantum mean value of the logical projector observable and turns out to be a probability measure in agreement with recent quantum cognition models. The analogy of many-valued logic with quantum angular momentum is then established. Logical observables for three-value logic are formulated as functions of the Lz observable of the orbital angular momentum l=1. The representative 3-valued 2-argument logical observables for the Min and Max connectives are explicitly obtained.Comment: 11 pages, 2 table

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules
    corecore