12,510 research outputs found

    A practical analytic model for daylight

    Get PDF
    www.cs.utah.edu Figure 1: Left: A rendered image of an outdoor scene with a constant colored sky and no aerial perspective. Right: The same image with a physically-based sky model and physically-based aerial perspective. Sunlight and skylight are rarely rendered correctly in computer graphics. A major reason for this is high computational expense. Another is that precise atmospheric data is rarely available. We present an inexpensive analytic model that approximates full spectrum daylight for various atmospheric conditions. These conditions are parameterized using terms that users can either measure or estimate. We also present an inexpensive analytic model that approximates the effects of atmosphere (aerial perspective). These models are fielded in a number of conditions and intermediate results verified against standard literature from atmospheric science. These models are analytic in the sense that they are simple formulas based on fits to simulated data; no explicit simulation is required to use them. Our goal is to achieve as much accuracy as possible without sacrificing usability

    Humidity's influence on visible region refractive index structure parameter Cn2C_n^2

    Get PDF
    In the infrared and visible bandpass, optical propagation theory conventionally assumes that humidity does not contribute to the effects of atmospheric turbulence on optical beams. While this assumption may be reasonable for dry locations, we demonstrate in this paper that there is an unequivocal effect due to the pre sence of humidity upon the strength of turbulence parameter, Cn2C_n^2, from data collected in the Chesapeake Bay area over 100-m length horizontal propagation paths. We describe and apply a novel technique, Hilbert Phase Analysis, to the relative humidity, temperature and Cn2C_n^2 data to show the contribution of the re levant climate variable to Cn2C_n^2 as a function of time.Comment: 16 pages, 7 figures, 2 tables, submitted to Applied Optic

    The Sun's position in the sky

    Full text link
    We express the position of the Sun in the sky as a function of time and the observer's geographic coordinates. Our method is based on applying rotation matrices to vectors describing points on the celestial sphere. We also derive direct expressions, as functions of date of the year and geographic latitude, for the duration of daylight, the maximum and minimum altitudes of the Sun, and the cardinal directions to sunrise and sunset. We discuss how to account for the eccentricity of the earth's orbit, the precessions of the equinoxes and the perihelion, the size of the solar disk, and atmospheric refraction. We illustrate these results by computing the dates of "Manhattanhenge" (when sunset aligns with the east-west streets on the main traffic grid for Manhattan, in New York City), by plotting the altitude of the Sun over representative cities as a function of time, and by showing plots ("analemmas") for the position of the Sun in the sky at a given hour of the day.Comment: 19 pages, 16 figures. v3: Replaced to match published version and to re-package Mathematica notebook as an ancillary fil

    Architectural Indoor Analysis: A Holistic Approach to Understand the Relation of Higher Education Classrooms and Academic Performance

    Get PDF
    The influence of learning space on users has been broadly accepted and tested. However, the literature has focused on single factor research, instead of holistic approaches. Additionally, lower educational levels have been the focus of interest, while higher education is moving towards multi-method teaching. This paper focuses on how learning spaces for different purposes (practice and lecture rooms) may influence academic performance from a holistic approach of learning physical environment perception. For this, the iPEP scale (Indoor physical environment perception) is used and validated through Cronbach Alpha and Exploratory Factorial Analysis. Then, multiple linear regression is conducted. The results indicate that iPEP measures near to 63 percent of the construct, which is structured in six factors. Moreover, linear regression analyses support previous literature concerning the influence of learning physical environment on academic performance (R2 = 0.154). The differences obtained between practice and lecture room in terms of predictor variables bring to the light the need to diagnose learning environments before designing changes in educational buildings. This research provides a self-reported way to measure indoor environments, as well as evidence concerning the modern university, which desires to combine several teaching methods

    Spacecraft-plasma interaction codes: NASCAP/GEO, NASCAP/LEO, POLAR, DynaPAC, and EPSAT

    Get PDF
    Development of a computer code to simulate interactions between the surfaces of a geometrically complex spacecraft and the space plasma environment involves: (1) defining the relevant physical phenomena and formulating them in appropriate levels of approximation; (2) defining a representation for the 3-D space external to the spacecraft and a means for defining the spacecraft surface geometry and embedding it in the surrounding space; (3) packaging the code so that it is easy and practical to use, interpret, and present the results; and (4) validating the code by continual comparison with theoretical models, ground test data, and spaceflight experiments. The physical content, geometrical capabilities, and application of five S-CUBED developed spacecraft plasma interaction codes are discussed. The NASA Charging Analyzer Program/geosynchronous earth orbit (NASCAP/GEO) is used to illustrate the role of electrostatic barrier formation in daylight spacecraft charging. NASCAP/low Earth orbit (LEO) applications to the CHARGE-2 and Space Power Experiment Aboard Rockets (SPEAR)-1 rocket payloads are shown. DynaPAC application to the SPEAR-2 rocket payloads is described. Environment Power System Analysis Tool (EPSAT) is illustrated by application to Tethered Satellite System 1 (TSS-1), SPEAR-3, and Sundance. A detailed description and application of the Potentials of Large Objects in the Auroral Region (POLAR) Code are presented

    Human Contrast Threshold and Astronomical Visibility

    Get PDF
    The standard visibility model in light pollution studies is the formula of Hecht (1947), as used e.g. by Schaefer (1990). However it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g Blackwell (1946)), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson by Bowen (1947), enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang (2004), implying that light pollution grew more rapidly in subsequent decades than has been supposed. The model is applied to the nebular observations of William Herschel, enabling his visual performance to be quantified. Proposals are made regarding sky quality indicators for public use.Comment: 21 pages, 18 figures, 1 table. Accepted in MNRA

    The development of local solar irradiance for outdoor computer graphics rendering

    Get PDF
    Atmospheric effects are approximated by solving the light transfer equation, LTE, of a given viewing path. The resulting accumulated spectral energy (its visible band) arriving at the observer’s eyes, defines the colour of the object currently on the line of sight. Due to the convenience of using a single rendering equation to solve the LTE for daylight sky and distant objects (aerial perspective), recent methods had opt for a similar kind of approach. Alas, the burden that the real-time calculation brings to the foil had forced these methods to make simplifications that were not in line with the actual world observation. Consequently, the results of these methods are laden with visual-errors. The two most common simplifications made were: i) assuming the atmosphere as a full-scattering medium only and ii) assuming a single density atmosphere profile. This research explored the possibility of replacing the real-time calculation involved in solving the LTE with an analytical-based approach. Hence, the two simplifications made by the previous real-time methods can be avoided. The model was implemented on top of a flight simulator prototype system since the requirements of such system match the objectives of this study. Results were verified against the actual images of the daylight skies. Comparison was also made with the previous methods’ results to showcase the proposed model strengths and advantages over its peers
    corecore