2,036 research outputs found

    The PC-Tree algorithm, Kuratowski subdivisions, and the torus.

    Get PDF
    The PC-Tree algorithm of Shih and Hsu (1999) is a practical linear-time planarity algorithm that provides a plane embedding of the given graph if it is planar and a Kuratowski subdivision otherwise. Remarkably, there is no known linear-time algorithm for embedding graphs on the torus. We extend the PC-Tree algorithm to a practical, linear-time toroidality test for K3;3-free graphs called the PCK-Tree algorithm. We also prove that it is NP-complete to decide whether the edges of a graph can be covered with two Kuratowski subdivisions. This greatly reduces the possibility of a polynomial-time toroidality testing algorithm based solely on edge-coverings by subdivisions of Kuratowski subgraphs

    CLEX: Yet Another Supercomputer Architecture?

    Get PDF
    We propose the CLEX supercomputer topology and routing scheme. We prove that CLEX can utilize a constant fraction of the total bandwidth for point-to-point communication, at delays proportional to the sum of the number of intermediate hops and the maximum physical distance between any two nodes. Moreover, % applying an asymmetric bandwidth assignment to the links, all-to-all communication can be realized (1+o(1))(1+o(1))-optimally both with regard to bandwidth and delays. This is achieved at node degrees of nεn^{\varepsilon}, for an arbitrary small constant ε∈(0,1]\varepsilon\in (0,1]. In contrast, these results are impossible in any network featuring constant or polylogarithmic node degrees. Through simulation, we assess the benefits of an implementation of the proposed communication strategy. Our results indicate that, for a million processors, CLEX can increase bandwidth utilization and reduce average routing path length by at least factors 1010 respectively 55 in comparison to a torus network. Furthermore, the CLEX communication scheme features several other properties, such as deadlock-freedom, inherent fault-tolerance, and canonical partition into smaller subsystems

    Treewidth, crushing, and hyperbolic volume

    Get PDF
    We prove that there exists a universal constant cc such that any closed hyperbolic 3-manifold admits a triangulation of treewidth at most cc times its volume. The converse is not true: we show there exists a sequence of hyperbolic 3-manifolds of bounded treewidth but volume approaching infinity. Along the way, we prove that crushing a normal surface in a triangulation does not increase the carving-width, and hence crushing any number of normal surfaces in a triangulation affects treewidth by at most a constant multiple.Comment: 20 pages, 12 figures. V2: Section 4 has been rewritten, as the former argument (in V1) used a construction that relied on a wrong theorem. Section 5.1 has also been adjusted to the new construction. Various other arguments have been clarifie

    Book embeddings of Reeb graphs

    Full text link
    Let XX be a simplicial complex with a piecewise linear function f:X→Rf:X\to\mathbb{R}. The Reeb graph Reeb(f,X)Reeb(f,X) is the quotient of XX, where we collapse each connected component of f−1(t)f^{-1}(t) to a single point. Let the nodes of Reeb(f,X)Reeb(f,X) be all homologically critical points where any homology of the corresponding component of the level set f−1(t)f^{-1}(t) changes. Then we can label every arc of Reeb(f,X)Reeb(f,X) with the Betti numbers (β1,β2,…,βd)(\beta_1,\beta_2,\dots,\beta_d) of the corresponding dd-dimensional component of a level set. The homology labels give more information about the original complex XX than the classical Reeb graph. We describe a canonical embedding of a Reeb graph into a multi-page book (a star cross a line) and give a unique linear code of this book embedding.Comment: 12 pages, 5 figures, more examples will be at http://kurlin.or

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed
    • …
    corecore