693 research outputs found

    Design of a wearable active ankle-foot orthosis for both sides

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)Portugal is the west European country with the highest rate of stroke-related mortality, being that, of those who suffer cerebrovascular accidents, 40% feature an impairment which can manifest itself through motor sequelae, namely drop foot. An ankle-foot orthosis is often recommended to passively accommodate these motor problems; however, active/powered exoskeletons are also a suitable solution for post-stroke patients. Due to the high complexity of the human ankle joint, one of the problems regarding these active devices is the misalignment occurring between the rehabilitation device and the human joint, which is a cause of parasitic forces, discomfort, and pain. The present master dissertation proposes the development of an adjustable wearable active ankle-foot orthosis that is able to tackle this misalignment issue concerning commercially available lower limb orthotic devices. This work is integrated on the SmartOs – Smart, Stand-alone Active Orthotic System – project that proposes an innovative robotic technology (a wearable mobile lab) oriented to gait rehabilitation. The conceptual design of a standard version of the SmartOs wearable active orthosis was initiated with the analysis of another ankle-foot orthosis – Exo-H2 (Technaid) – from which the necessary design changes were implemented, aiming at the improvement of the established device. In order to achieve a conceptual solution, both the practical knowledge of the Orthos XXI design team and several design methods were used to ensure the accomplishment of the defined requirements. The detailed design process of the standard SmartOs wearable active orthosis prototype is disclosed. With the purpose of validating the design, the critical components were simulated with the resources available in SolidWorks®, and the necessary CAD model’s adaptations were implemented to guarantee a reliable and safe design. The presented design is currently set for further production in Orthos XXI, followed by the mandatory mechanical tests.Portugal é o país da Europa ocidental com maior taxa de mortalidade por acidente vascular cerebral (AVC), sendo que, dos que sofrem acidentes vasculares cerebrais, 40% apresentam uma deficiência que pode manifestar-se por sequelas motoras, nomeadamente o pé pendente. Uma ortótese do tornozelo é recomendada frequentemente para acomodar passivamente esses problemas motores; no entanto, exoesqueletos ativos são também uma solução adequada para pacientes pós-AVC. Devido à alta complexidade da articulação do tornozelo humano, um dos problemas associados a esses dispositivos ativos é o desalinhamento que ocorre entre o dispositivo de reabilitação e a articulação humana, que é uma causa de forças parasitas, desconforto e dor. A presente dissertação de mestrado propõe o desenvolvimento de uma ortótese ativa do tornozelo ajustável e vestível, que seja capaz de resolver esse problema de desalinhamento relativo aos dispositivos ortóticos de membros inferiores disponíveis comercialmente. Este trabalho está integrado no projeto SmartOs - Smart, Stand-alone Active Orthotic System - projeto que propõe uma tecnologia robótica inovadora (wearable mobile lab) direcionada para a reabilitação da marcha. O projeto conceptual de uma versão padrão da ortótese ativa vestível do projeto SmartOs foi iniciado com a análise de outra ortótese do tornozelo – Exo-H2 (Technaid) - a partir da qual foram implementadas as alterações de projeto necessárias, visando o aprimoramento do dispositivo estabelecido. Para se chegar a uma solução conceptual, tanto o conhecimento prático da equipa de projeto da Orthos XXI como os diversos métodos de projeto foram utilizados para garantir o cumprimento dos requisitos definidos. O processo do desenho detalhado da versão padrão da ortótese ativa SmartOs será também divulgado. Com o objetivo de validar o projeto, os componentes críticos foram simulados com os recursos disponíveis no SolidWorks® e as adaptações necessárias do modelo CAD foram implementadas para garantir um projeto fidedigno e seguro. O projeto apresentado está atualmente em preparação para produção na empresa Orthos XXI, depois do qual se seguem os ensaios mecânicos obrigatórios

    Evaluation of gait symmetry in poliomyelitis subjects : Comparison of a conventional knee ankle foot orthosis (KAFO) and a new powered KAFO.

    Get PDF
    Background: Compared to able-bodied subjects, subjects with post polio syndrome and poliomyelitis demonstrate a preference for weight-bearing on the non-paretic limb, causing gait asymmetry. Objectives: The purpose of this study was to evaluate the gait symmetry of the poliomyelitis subjects when ambulating with either a drop- locked knee ankle foot orthosis (KAFO) or a newly developed powered KAFO. Methods: Seven subjects with poliomyelitis who routinely wore conventional KAFOs participated in this study, and received training to enable them to ambulate with the powered KAFO on level ground, prior to gait analysis. Results: There were no significant differences in the gait symmetry index (SI) of step length (P=0.085), stance time (P=0.082), double limb support time (P=0.929) or speed of walking (p=0.325) between the two test conditions. However, using the new powered KAFO improved the SI in step width (P=0.037), swing time (P=0.014), stance phase percentage (P=0.008) and knee flexion during swing phase (p≤0.001) compared to wearing the dropped locked KAFO. Conclusion: The use of a powered KAFO for ambulation by poliomyelitis subjects affects gait symmetry in the base of support, swing time, stance phase percentage and knee flexion during swing phase

    Role of Gait Training in Recovery of Standing and Walking in Subjects with Spinal Cord Injury

    Get PDF
    Gait training has an important role in rehabilitation of standing and walking in spinal cord injury (SCI) patients. There were different types of gait training in these subjects. Both the body weight support treadmill training and robotic-assisted and robotic exoskeleton are effective and secure methods for gait training and improving the energy demand and metabolic cost in SCI patients in different level of injury. The powered exoskeletons can provide patients with SCI the ability to walk with the lowest energy consumption. The powered exoskeleton’s energy consumption and speed of walking depend on the training duration. Based on different types of gait training methods, training time, and other affected parameters, the aim of this chapter was to evaluate the role of gait training in recovery of standing and walking in SCI patients

    Robotic Rehabilitation Devices of Human Extremities: Design Concepts and Functional Particularities

    Get PDF
    International audienceAll over the world, several dozen million people suffer from the effects of post-polio, multiple sclerosis, spinal cord injury, cerebral palsy, etc. and could benefit from the advances in robotic devices for rehabilitation. Thus, for modern society, an important and vital problem of designing systems for rehabilitation of human physical working ability appears. The temporary or permanent loss of human motor functions can be compensated by means of various rehabilitation devices. They can be simple mechanical systems for orthoses, which duplicate the functions of human extremities supplying with rigidity and bearing capacity or more complex mechatronic rehabilitation devices with higher level of control. We attempt to cover all of the major developments in these areas, focusing particularly on the development of the different concepts and their functional characteristics. The robotic devices with several structures are classified, taking into account the actuation systems, the neuromuscular stimulations, and the structural schemes. It is showed that the problems concerning the design of rehabilitation devices are complex and involve many questions in the sphere of biomedicine, mechanics, robot technology, electromechanics and optimal control. This paper provides a design overview of hardware, actuation, sensory, and control systems for most of the devices that have been described in the literature, and it ends with a discussion of the major advances that have been made and should be yet overcome

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    Novel swing-assist un-motorized exoskeletons for gait training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Robotics is emerging as a promising tool for functional training of human movement. Much of the research in this area over the last decade has focused on upper extremity orthotic devices. Some recent commercial designs proposed for the lower extremity are powered and expensive – hence, these could have limited affordability by most clinics. In this paper, we present a novel un-motorized bilateral exoskeleton that can be used to assist in treadmill training of motor-impaired patients, such as with motor-incomplete spinal cord injury. The exoskeleton is designed such that the human leg will have a desirable swing motion, once it is strapped to the exoskeleton. Since this exoskeleton is un-motorized, it can potentially be produced cheaply and could reduce the physical demand on therapists during treadmill training.</p> <p>Results</p> <p>A swing-assist bilateral exoskeleton was designed and fabricated at the University of Delaware having the following salient features: (i) The design uses torsional springs at the hip and the knee joints to assist the swing motion. The springs get charged by the treadmill during stance phase of the leg and provide propulsion forces to the leg during swing. (ii) The design of the exoskeleton uses simple dynamic models of sagittal plane walking, which are used to optimize the parameters of the springs so that the foot can clear the ground and have a desirable forward motion during walking. The bilateral exoskeleton was tested on a healthy subject during treadmill walking for a range of walking speeds between 1.0 mph and 4.0 mph. Joint encoders and interface force-torque sensors mounted on the exoskeleton were used to evaluate the effectiveness of the exoskeleton in terms of the hip and knee joint torques applied by the human during treadmill walking.</p> <p>Conclusion</p> <p>We compared two different cases. In case 1, we estimated the torque applied by the human joints when walking with the device using the joint kinematic data and interface force-torque sensors. In case 2, we calculated the required torque to perform a similar gait only using the kinematic data collected from joint motion sensors. On analysis, we found that at 2.0 mph, the device was effective in reducing the maximum hip torque requirement and the knee joint torque during the beginning of the swing. These behaviors were retained as the treadmill speed was changed between 1–4 mph. These results were remarkable considering the simplicity of the dynamic model, model uncertainty, non-ideal spring behavior, and friction in the joints. We believe that the results can be further improved in the future. Nevertheless, this promises to provide a useful and effective methodolgy for design of un-motorized exoskeletons to assist and train swing of motor-impaired patients.</p

    Evaluating the Effects of Ankle-Foot-Orthoses, Functional Electrical Stimulators, and Trip-specific Training on Fall Outcomes in Individuals with Stroke

    Get PDF
    abstract: This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Towards a human-in-the-loop control for a smart orthotic system

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)Stroke is the main cause of paralysis. This pathology has provoked a considerable increase of persons with motor impairments. With a therapy focused on each clinical case, the total or partial recovery can be achieved. Powered orthoses have been developed to promote an effective recover, based on repetitive gait training and user’s active participation. Many control approaches have been developed to control these devices, but none of them promotes an user-oriented strategy focused to the user’s needs. In an attempt of solving this issue, a new approach named Human-in-the-loop is emerging. This strategy allows the adaptation of some assistive parameters based on the user’s energetic cost, promoting a therapy tailored to each end-user needs. However, to estimate the energy expenditure, the use of non-ergonomic sensors, not suitable for clinical context, is required. Thus, it is necessary to find new ways of estimating energy expenditure using wearable and comfortable sensors. In this dissertation, the first steps to introduce the Human-in-the-loop strategy into a powered orthosis are presented. For this purpose, two strategies were developed: a strategy that allows the angular trajectory adaptation in real-time and other that promotes a stiffness adaptation all over the gait cycle. Both strategies were validated with healthy subjects. In the first strategy, the orthosis was able to modify its assistance in a fraction of microseconds, and the end-users were able to follow her with a median error below 10%. Regarding the second strategy, the results show that the orthosis allowed an effective change in the systems’ interaction stiffness, promoting an active participation of each user during its assistance. The energetic impact of using the robotic assistive device is also presented. As it promotes an energy expenditure augmentation in more than 30% in comparison to walk without the device, the necessity of implementing the Human-in-the-loop strategy was highlighted. In an attempt of finding an ergonomic technique to estimate the energetic cost, the use of machine learning algorithms was tested. The results, obtained with a MLP and a LSTM, prove that it is possible to estimate the energy expenditure with a mean error close to 11%. Future work consists in the implementation of the model in real-time and the collection of more data with the aforementioned control approaches, in a way of constructing a more robust model.O AVC é uma das maiores causas de paralisia. Esta patologia, cada vez mais com maior incidência nos jovens, tem provocado um aumento considerável de pessoas com problemas de mobilidade. Com uma terapia focada a cada caso clínico, a recuperação total ou parcial pode ser conseguida. As ortóteses ativas têm vindo a ser desenvolvidas com o propósito de promover uma recuperação eficaz, baseada em treinos repetitivos e numa participação ativa dos utilizadores. Várias abordagens de controlo têm vindo a ser desenvolvidas para controlar estes dispositivos, mas nenhuma delas promove uma estratégia orientada às necessidades do utilizador. Na tentativa de solucionar este problema, uma nova abordagem, designada por Human-in-the-loop está a emergir. Baseada no custo energético, esta estratégia permite adaptar parâmetros da assistência, promovendo uma terapia focada e direcionada a cada utilizador. No entanto, para estimar o custo energético, recorre-se ao uso de sensores que não são adequados para contexto clínico. Assim, torna-se necessário estudar novas formas de estimar o custo energético. Nesta dissertação são apresentados os primeiros passos para introduzir o controlo Human-in-the-loop numa ortótese ativa. Para isso, duas estratégias foram apresentadas: uma estratégia que permite adaptar a trajetória angular da ortótese, em tempo real, e outra que promove a adaptação da complacência do sistema ao longo do ciclo da marcha. Ambas foram validadas com sujeitos saudáveis. Relativamente à primeira abordagem, a ortótese foi capaz de modificar a sua assistência em microssegundos, e os utilizadores foram capazes de a seguir com um erro mediano inferior a 10%. No que diz respeito à segunda abordagem, os resultados mostram que a ortótese promoveu uma alteração eficaz da complacência de interação, promovendo uma participação ativa do utilizador durante a sua assistência. O impacto energético do uso do sistema robótico é, também, apresentado. Promovendo um aumento do custo energético em mais de 30%, a necessidade da estratégia Human-in-the-loop foi realçada. Na tentativa de encontrar uma técnica para estimar o custo energético, recorreu-se ao uso de machine learning. Os resultados, obtidos com uma MLP e uma LSTM, provam que é possível estimar o custo energético com um erro médio próximo dos 11%. Trabalho futuro passa pela implementação do modelo em tempo real e a recolha de mais dados com as abordagens de controlo apresentadas, de forma a construir um modelo mais robusto

    Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke

    Full text link
    Stroke-induced hemiparetic gait is characteristically asymmetric and metabolically expensive. Weakness and impaired control of the paretic ankle contribute to reduced forward propulsion and ground clearance—walking subtasks critical for safe and efficient locomotion. Targeted gait interventions that improve paretic ankle function after stroke are therefore warranted. We have developed textile-based, soft wearable robots that transmit mechanical power generated by off-board or body-worn actuators to the paretic ankle using Bowden cables (soft exosuits) and have demonstrated the exosuits can overcome deficits in paretic limb forward propulsion and ground clearance, ultimately reducing the metabolic cost of hemiparetic walking. This study elucidates the biomechanical mechanisms underlying exosuit-induced reductions in metabolic power. We evaluated the relationships between exosuit-induced changes in the body center of mass (COM) power generated by each limb, individual joint powers, and metabolic power. Compared to walking with an exosuit unpowered, exosuit assistance produced more symmetrical COM power generation during the critical period of the step-to-step transition (22.4±6.4% more symmetric). Changes in individual limb COM power were related to changes in paretic (R2= 0.83, P= 0.004) and nonparetic (R2= 0.73, P= 0.014) ankle power. Interestingly, despite the exosuit providing direct assistance to only the paretic limb, changes in metabolic power were related to changes in nonparetic limb COM power (R2= 0.80, P= 0.007), not paretic limb COM power (P> 0.05). These findings provide a fundamental understanding of how individuals poststroke interact with an exosuit to reduce the metabolic cost of hemiparetic walking.Accepted manuscript2019-03-0
    • …
    corecore