14,641 research outputs found

    Colour technologies for content production and distribution of broadcast content

    Get PDF
    The requirement of colour reproduction has long been a priority driving the development of new colour imaging systems that maximise human perceptual plausibility. This thesis explores machine learning algorithms for colour processing to assist both content production and distribution. First, this research studies colourisation technologies with practical use cases in restoration and processing of archived content. The research targets practical deployable solutions, developing a cost-effective pipeline which integrates the activity of the producer into the processing workflow. In particular, a fully automatic image colourisation paradigm using Conditional GANs is proposed to improve content generalisation and colourfulness of existing baselines. Moreover, a more conservative solution is considered by providing references to guide the system towards more accurate colour predictions. A fast-end-to-end architecture is proposed to improve existing exemplar-based image colourisation methods while decreasing the complexity and runtime. Finally, the proposed image-based methods are integrated into a video colourisation pipeline. A general framework is proposed to reduce the generation of temporal flickering or propagation of errors when such methods are applied frame-to-frame. The proposed model is jointly trained to stabilise the input video and to cluster their frames with the aim of learning scene-specific modes. Second, this research explored colour processing technologies for content distribution with the aim to effectively deliver the processed content to the broad audience. In particular, video compression is tackled by introducing a novel methodology for chroma intra prediction based on attention models. Although the proposed architecture helped to gain control over the reference samples and better understand the prediction process, the complexity of the underlying neural network significantly increased the encoding and decoding time. Therefore, aiming at efficient deployment within the latest video coding standards, this work also focused on the simplification of the proposed architecture to obtain a more compact and explainable model

    Reinforcement Learning-based User-centric Handover Decision-making in 5G Vehicular Networks

    Get PDF
    The advancement of 5G technologies and Vehicular Networks open a new paradigm for Intelligent Transportation Systems (ITS) in safety and infotainment services in urban and highway scenarios. Connected vehicles are vital for enabling massive data sharing and supporting such services. Consequently, a stable connection is compulsory to transmit data across the network successfully. The new 5G technology introduces more bandwidth, stability, and reliability, but it faces a low communication range, suffering from more frequent handovers and connection drops. The shift from the base station-centric view to the user-centric view helps to cope with the smaller communication range and ultra-density of 5G networks. In this thesis, we propose a series of strategies to improve connection stability through efficient handover decision-making. First, a modified probabilistic approach, M-FiVH, aimed at reducing 5G handovers and enhancing network stability. Later, an adaptive learning approach employed Connectivity-oriented SARSA Reinforcement Learning (CO-SRL) for user-centric Virtual Cell (VC) management to enable efficient handover (HO) decisions. Following that, a user-centric Factor-distinct SARSA Reinforcement Learning (FD-SRL) approach combines time series data-oriented LSTM and adaptive SRL for VC and HO management by considering both historical and real-time data. The random direction of vehicular movement, high mobility, network load, uncertain road traffic situation, and signal strength from cellular transmission towers vary from time to time and cannot always be predicted. Our proposed approaches maintain stable connections by reducing the number of HOs by selecting the appropriate size of VCs and HO management. A series of improvements demonstrated through realistic simulations showed that M-FiVH, CO-SRL, and FD-SRL were successful in reducing the number of HOs and the average cumulative HO time. We provide an analysis and comparison of several approaches and demonstrate our proposed approaches perform better in terms of network connectivity

    BEING YOUR OWN RELIGIOUS PROTAGONIST: THE RAMIFICATIONS OF RELIGIOUS GUILT, SHAME, AND ABUSE ON WOMEN’S IDENTITIES

    Get PDF
    Through analysis of various literary texts, social media, and television, “Being Your Own Religious Protagonist: The Ramifications of Religious Guilt, Shame, and Abuse on Women’s Identities” will examine the different ways in which women experience religion as children and teenage girls, as well as how their individual and complex religious experiences affect their upbringing and eventual identities as adult women. I am particularly interested in looking at how these experiences affect not only their identities, but their decisions regarding faith and whether or not they wish to remain in the same religious organizations they grew up in. While many who suffer from religious trauma decide to cut ties with their faith entirely, there are a great deal of women who wish to stay connected to their faith, either by finding a new form of religion that brings them joy, or by attempting to make positive changes within their religious community that are beneficial to all women involved. The introduction to this work will include some of my own personal experiences with religion as a young woman growing up in the Catholic church, as well as presenting the layout of the thesis contents

    CFLIT: Coexisting Federated Learning and Information Transfer

    Full text link
    Future wireless networks are expected to support diverse mobile services, including artificial intelligence (AI) services and ubiquitous data transmissions. Federated learning (FL), as a revolutionary learning approach, enables collaborative AI model training across distributed mobile edge devices. By exploiting the superposition property of multiple-access channels, over-the-air computation allows concurrent model uploading from massive devices over the same radio resources, and thus significantly reduces the communication cost of FL. In this paper, we study the coexistence of over-the-air FL and traditional information transfer (IT) in a mobile edge network. We propose a coexisting federated learning and information transfer (CFLIT) communication framework, where the FL and IT devices share the wireless spectrum in an OFDM system. Under this framework, we aim to maximize the IT data rate and guarantee a given FL convergence performance by optimizing the long-term radio resource allocation. A key challenge that limits the spectrum efficiency of the coexisting system lies in the large overhead incurred by frequent communication between the server and edge devices for FL model aggregation. To address the challenge, we rigorously analyze the impact of the computation-to-communication ratio on the convergence of over-the-air FL in wireless fading channels. The analysis reveals the existence of an optimal computation-to-communication ratio that minimizes the amount of radio resources needed for over-the-air FL to converge to a given error tolerance. Based on the analysis, we propose a low-complexity online algorithm to jointly optimize the radio resource allocation for both the FL devices and IT devices. Extensive numerical simulations verify the superior performance of the proposed design for the coexistence of FL and IT devices in wireless cellular systems.Comment: The paper has been accepted for publication by IEEE Transactions on Wireless Communications (March 2023

    Interference-aware Demand-based User Scheduling in Precoded High Throughput Satellite Systems

    Get PDF
    In recent years, dynamic traffic demand requisites have driven the satellite communication service providers to implement reconfigurable demand-driven features to align the delivered throughput with the temporal and geographical variations of the traffic demand. Also, in current interference-limited High Throughput Satellite (HTS) systems, the resulting inter-beam co-channel interference can be mitigated by carefully performing precoding and user scheduling. Unfortunately, the conventional user scheduling algorithms fail to provide demand satisfaction for dynamic traffic demand requisites. Hence, in this paper, we focus on the user scheduling design for precoded satellite systems where both co-channel interference and user demands are taken into account. In particular, we first classify the sectors in each beam according to the interference they may cause to neighboring beams. Next, we formulate the scheduling problem such as the activation of neighboring beam sectors is avoided while proportionally dwelling on the sectors based on their traffic demands. The supporting numerical results for different demand distribution profiles validate the effectiveness of proposed interference-aware demand-based user scheduling over conventional scheduling techniques

    CITIES: Energetic Efficiency, Sustainability; Infrastructures, Energy and the Environment; Mobility and IoT; Governance and Citizenship

    Get PDF
    This book collects important contributions on smart cities. This book was created in collaboration with the ICSC-CITIES2020, held in San José (Costa Rica) in 2020. This book collects articles on: energetic efficiency and sustainability; infrastructures, energy and the environment; mobility and IoT; governance and citizenship
    • 

    corecore