4,512 research outputs found

    Digital system bus integrity

    Get PDF
    This report summarizes and describes the results of a study of current or emerging multiplex data buses as applicable to digital flight systems, particularly with regard to civil aircraft. Technology for pre-1995 and post-1995 timeframes has been delineated and critiqued relative to the requirements envisioned for those periods. The primary emphasis has been an assured airworthiness of the more prevalent type buses, with attention to attributes such as fault tolerance, environmental susceptibility, and problems under continuing investigation. Additionally, the capacity to certify systems relying on such buses has been addressed

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Get PDF
    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included

    Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems

    Get PDF
    The increasing capacity and capabilities of FPGA devices in recent years provide an attractive option for performance-hungry applications in the image and video processing domain. FPGA devices are often used as implementation platforms for image and video processing algorithms for real-time applications due to their programmable structure that can exploit inherent spatial and temporal parallelism. While performance and area remain as two main design criteria, power consumption has become an important design goal especially for mobile devices. Reduction in power consumption can be achieved by reducing the supply voltage, capacitances, clock frequency and switching activities in a circuit. Switching activities can be reduced by architectural optimization of the processing cores such as adders, multipliers, multiply and accumulators (MACS), etc. This dissertation research focuses on reducing the switching activities in digital circuits by considering data dependencies in bit level, word level and block level neighborhoods in a video frame. The bit level data neighborhood dependency consideration for power reduction is illustrated in the design of pipelined array, Booth and log-based multipliers. For an array multiplier, operands of the multipliers are partitioned into higher and lower parts so that the probability of the higher order parts being zero or one increases. The gating technique for the pipelined approach deactivates part(s) of the multiplier when the above special values are detected. For the Booth multiplier, the partitioning and gating technique is integrated into the Booth recoding scheme. In addition, a delay correction strategy is developed for the Booth multiplier to reduce the switching activities of the sign extension part in the partial products. A novel architecture design for the computation of log and inverse-log functions for the reduction of power consumption in arithmetic circuits is also presented. This also utilizes the proposed partitioning and gating technique for further dynamic power reduction by reducing the switching activities. The word level and block level data dependencies for reducing the dynamic power consumption are illustrated by presenting the design of a 2-D convolution architecture. Here the similarities of the neighboring pixels in window-based operations of image and video processing algorithms are considered for reduced switching activities. A partitioning and detection mechanism is developed to deactivate the parallel architecture for window-based operations if higher order parts of the pixel values are the same. A neighborhood dependent approach (NDA) is incorporated with different window buffering schemes. Consideration of the symmetry property in filter kernels is also applied with the NDA method for further reduction of switching activities. The proposed design methodologies are implemented and evaluated in a FPGA environment. It is observed that the dynamic power consumption in FPGA-based circuit implementations is significantly reduced in bit level, data level and block level architectures when compared to state-of-the-art design techniques. A specific application for the design of a real-time video processing system incorporating the proposed design methodologies for low power consumption is also presented. An image enhancement application is considered and the proposed partitioning and gating, and NDA methods are utilized in the design of the enhancement system. Experimental results show that the proposed multi-level power aware methodology achieves considerable power reduction. Research work is progressing In utilizing the data dependencies in subsequent frames in a video stream for the reduction of circuit switching activities and thereby the dynamic power consumption

    Standard interface definition for avionics data bus systems

    Get PDF
    Data bus for avionics system of space shuttle, noting functions of interface unit, error detection and recovery, redundancy, and bus control philosoph

    Design techniques for low-power systems

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system including error control, system decomposition, communication and MAC protocols, and low-power short range networks

    System configuration and executive requirements specifications for reusable shuttle and space station/base

    Get PDF
    System configuration and executive requirements specifications for reusable shuttle and space station/bas

    The ARGUS Vertex Trigger

    Get PDF
    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5\,mm radius.Comment: gzipped Postscript, 27 page
    • 

    corecore