29,435 research outputs found

    A mobility-supporting MAC scheme for bursty traffic in IoT and WSNs

    Get PDF
    International audienceRecent boom of mobile applications has become an essential class of mobile Internet of Things (IoT), whereby large amounts of sensed data are collected and shared by mobile sensing devices for observing phenomena such as traffic or the environmental. Currently, most of the proposed Medium Access Control (MAC) protocols mainly focus on static networks. However, mobile sensor nodes may pose many communication challenges during the design and development of a MAC protocol. These difficulties first require an efficient connection establishment between a mobile and static node, and then an efficient data packet transmissions. In this study, we propose MobIQ, an advanced mobility-handling MAC scheme for low-power MAC protocols, which achieves for efficient neighbour(hood) discovery and low-delay communication. Our thorough performance evaluation, conducted on top of Contiki OS, shows that MobIQ outperforms state-of-the-art solutions such as MoX-MAC, MOBINET and ME-ContikiMAC, in terms of significantly reducing delay, contention to the medium and energy consumption

    An Energy Efficient MAC Protocol for QoS Provisioning in Cognitive Radio Ad Hoc Networks

    Get PDF
    The explosive growth in the use of real-time applications on mobile devices has resulted in new challenges to the design of medium access control (MAC) protocols for ad hoc networks. In this paper, we propose an energy efficient cognitive radio (CR) MAC protocol for QoS provisioning called ECRQ-MAC, which integrate the spectrum sensing at physical (PHY) layer and the channel-timeslots allocation at MAC layer. We consider the problem of providing QoS guarantee to CR users as well as to maintain the most efficient use of scarce bandwidth resources. The ECRQ-MAC protocol exploits the advantage of both multiple channels and TDMA, and achieves aggressive power savings by allowing CR users that are not involved in communication to go into sleep mode. The proposed ECRQ-MAC protocol allows CR users to identify and use the unused frequency spectrum of licensed band in a way that constrains the level of interference to the primary users (PUs). Our scheme improves network throughput significantly, especially when the network is highly congested. The simulation results show that our proposed protocol successfully exploits multiple channels and significantly improves network performance by using the licensed spectrum opportunistically and protects QoS provisioning over cognitive radio ad hoc networks

    Energy-Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions

    Get PDF
    The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC) protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs). The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors’ energy consumption in order to prolong sensors’ battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs), which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead

    Energy-aware hybrid MAC protocol for IoT enabled WBAN systems

    Get PDF
    Energy efficiency is an important quality-of-service requirement that needs to be considered when designing an efficient MAC protocol for a WBAN system due to the limited power resources of biomedical sensor devices. To address this, an energy-aware multi-group hybrid MAC (MG-HYMAC) protocol is proposed in this work to improve energy efficiency as well as the lifetime of the biomedical sensor devices in a personalized healthcare system. The proposed protocol combines both the advantages of the CSMA/CA and the TDMA schemes to enable the biomedical sensors to efficiently contend for transmission opportunities and to allow them to efficiently transmit health data. The MG-HYMAC protocol is combined with a transmission scheduling technique to duty cycle the operations of the biomedical devices with less critical data to determine when and how the biomedical sensor devices will transmit their health data packets in order to reduce collisions to save energy and prolong the battery lifetime of the biomedical sensor devices so as to improve the overall network lifetime. Also, a stochastic probability model and a heuristic-based power control scheme are developed to solve time allocation and power control problems to improve energy efficiency and the biomedical sensor devices lifetime. To validate the MG-HYMAC protocol, it was compared with other related protocols (including HyMAC and CPMAC) and simulated in MATLAB. The simulation results proved that the proposed MG-HYMAC protocol outperformed the existing MAC protocols using standard metrics like energy efficiency, biomedical sensor devices lifetime, and convergence speed.https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361hj2023Electrical, Electronic and Computer Engineerin

    Reduce energy consumption in the wireless sensor network by using EEL-MAC protocol

    Get PDF
    Wireless Sensor Network (WSN) nodes are broadly used in various sectors. Over the years, WSN has emerged as an enabler to collect and process data from remote locations or disaster areas. WSNs rely on hardware simplicity to make sensor field deployments both affordable and long-lasting without maintenance support. However, the WSN nodes experience a lot of problems such as, overhearing, collision, hidden terminal, idle listening and high latency, which resulted in high energy consumption, thus limiting the lifetime of the node. Moreover, WSN nodes are strongly dependent on their limited battery power, and replenishing them again is difficult. Therefore, this research investigates the energy-efficient Medium Access Control (MAC) protocols designed to extend both the lifetime by effective energy management through a reduction in idle time and increased sleep time for nodes to save energy. This study also aims to reduce the latency between nodes and sink node. The EEL-MAC hybrid MAC protocol starts by a synchronization phase using TDMA to synchronize all nodes in the sensor field. In the second phase the scheme uses the CSMA mechanism for communication between nodes and the sink node. In this study makes two significant contributions to wireless sensor networks. First, the EEL-MAC protocol offers significant energy savings and prolongs network lifetime. The second contribution is the introduction of high response, by designing a one-hop communication to reduce both end-to-end delay and latency

    An Energy Efficient Mac Layer Design for Wireless Sensor Network

    Get PDF
    Recent technological advances in sensors, low power integrated circuits, and wireless communications have enabled the design of low-cost, lightweight, and intelligent wireless sensor nodes. The IEEE 802.15.4 standard is a specific Wireless Personal Area Network (WPAN) standard designed for various wireless sensor applications. Idle listening, packet collision, control packet overhead and overhearing are considered as energy consuming resources in WSNs. As the idle listening and packet collision are two major power consuming parts, we considered two solutions for reducing both of them to achieve an energy efficient protocol. We concentrate on the MAC layer design to overcome the energy consumption by radio management procedure and the backoff exponent mechanism. In the radio management, we analyze the contention part of the active duration of the MAC IEEE 802.15.4 standard superframe and allow nodes to enter the sleep state regarding to their available data for transmission instead of staying awake for the entire active period. This method will be useful especially when sensors do not have any data to send. The proposed non-persistent Carrier Sense Multiple Access (np-CSMA) protocol employs backoff exponent management mechanism. This algorithm helps the network to be reliable under traffic changes and saves more energy by avoiding collision. It assigns different range of BE (backoff exponent) to each node with respect to node’s contribution in network traffic. In our scheme a coordinator can observe the network traffic due to the data information associated with devices. It can manage the Personal Area Networks (PANs) devices by the beacon packet to go to sleep mode when they do not have any packet to send. In this thesis, by using the sleep period together with backoff exponent management in our protocol design, the amount of energy consumption will be reduced. The proposed model has been compared to original 802.15.4 standard and the existing Adaptive Backoff Exponent (ABE) MAC protocol to illustrate the improvement. Moreover, the BE management algorithm derives better system performance such as end-to-end delay, throughput, packet delivery ratio and Link Quality Indicator (LQI). The proposed model has been designed in such a way that the introduction of extra sleep period inserted in superframe improves the energy efficiency while maintaining other system performance parameters. The proposed MAC protocol has improved the energy consumption around 60% as compared to ABE-MAC. The proposed MAC protocol with an extra radio management technique together with backoff management procedure can achieve 70% more energy saving than MAC IEEE 802.15.4 standard

    Energy efficient distributed receiver based cooperative medium access control protocol for wireless sensor networks.

    Get PDF
    M.Sc.Eng. University of KwaZulu-Natal, Durban 2013.Wireless sensor networks are battery operated computing and sensing devices that collaborate to achieve a common goal for a specific application. They are formed by a cluster of sensor nodes where each sensor node is composed of a single chip with embedded memory (microprocessor), a transceiver for transmission and reception (resulting in the most energy consumption), a sensor device for event detection and a power source to keep the node alive. Due to the environmental nature of their application, it is not feasible to change or charge the power source once a sensor node is deployed. The main design objective in WSNs (Wireless Sensor Networks) is to define effective and efficient strategies to conserve energy for the nodes in the network. With regard to the transceiver, the highest consumer of energy in a sensor node, the factors contributing to energy consumption in wireless sensor networks include idle listening, where nodes keep listening on the channel with no data to receive; ovehearing, where nodes hears or intercept data that is meant for a different node; and collision, which occurs at the sink node when it receives data from different nodes at the same time. These factors all arise during transmission or reception of data in the Transceiver module in wireless sensor networks. A MAC (Medium Access Control) protocol is one of the techniques that enables successful operation while minimizing the energy consumption in the network. Its task is to avoid collision, reduce overhearing and to reduce idle listening by properly managing the state of each node in the network. The aim, when designing a MAC protocol for WSNs is to achieve a balance amongst minimum energy consumption, minimum latency, maximum fault-tolerance and providing QoS (Quality of Service). To carefully achieve this balance, this dissertation has proposed, designed, simulated and analyzed a new cooperative MAC scheme with an overhearing avoidance technique with the aim of minimizing energy consumption by attempting to minimize the overhearing in the WSN. The new MAC protocol for WSNs supports the cooperative diversity and overhearing communications in order to reduce the effects of energy consumption thus increase the network lifetime, providing improved communication reliability and further mitigating the effects of multipath fading in WSNs. The MAC scheme in this work focuses on cooperation with overhearing avoidance and reducing transmissions in case of link failures in order to minimize energy consumption. The cooperative MAC scheme presented herein uses the standard IEEE 802.15.4 scheme as its base physical model. It introduces cooperation, overhearing avoidance, receiver based relay node selection and a Markov-based channel state estimation. The performance analysis of the developed Energy Efficient Distributed Receiver based MAC (E2DRCMAC) protocol for WSNs shows an improvement from the standard IEEE 802.15.4 MAC layer with regard to the energy consumption, throughput, reliability of message delivery, bit error rates, system capacity, packet delay, packet error rates, and packet delivery ratios

    IEEE 802.15.4 Frame Aggregation Enhancement to Provide High Performance in Life-Critical Patient Monitoring Systems

    Full text link
    In wireless body area sensor networks (WBASNs), Quality of Service (QoS) provision for patient monitoring systems in terms of time-critical deadlines, high throughput and energy efficiency is a challenging task. The periodic data from these systems generates a large number of small packets in a short time period which needs an efficient channel access mechanism. The IEEE 802.15.4 standard is recommended for low power devices and widely used for many wireless sensor networks applications. It provides a hybrid channel access mechanism at the Media Access Control (MAC) layer which plays a key role in overall successful transmission in WBASNs. There are many WBASN’s MAC protocols that use this hybrid channel access mechanism in variety of sensor applications. However, these protocols are less efficient for patient monitoring systems where life critical data requires limited delay, high throughput and energy efficient communication simultaneously. To address these issues, this paper proposes a frame aggregation scheme by using the aggregated-MAC protocol data unit (A-MPDU) which works with the IEEE 802.15.4 MAC layer. To implement the scheme accurately, we develop a traffic patterns analysis mechanism to understand the requirements of the sensor nodes in patient monitoring systems, then model the channel access to find the performance gap on the basis of obtained requirements, finally propose the design based on the needs of patient monitoring systems. The mechanism is initially verified using numerical modelling and then simulation is conducted using NS2.29, Castalia 3.2 and OMNeT++. The proposed scheme provides the optimal performance considering the required QoS

    IEEE 802.15.4 Frame Aggregation Enhancement to Provide High Performance in Life-Critical Patient Monitoring Systems

    Get PDF
    In wireless body area sensor networks (WBASNs), Quality of Service (QoS) provision for patient monitoring systems in terms of time-critical deadlines, high throughput and energy efficiency is a challenging task. The periodic data from these systems generates a large number of small packets in a short time period which needs an efficient channel access mechanism. The IEEE 802.15.4 standard is recommended for low power devices and widely used for many wireless sensor networks applications. It provides a hybrid channel access mechanism at the Media Access Control (MAC) layer which plays a key role in overall successful transmission in WBASNs. There are many WBASN’s MAC protocols that use this hybrid channel access mechanism in variety of sensor applications. However, these protocols are less efficient for patient monitoring systems where life critical data requires limited delay, high throughput and energy efficient communication simultaneously. To address these issues, this paper proposes a frame aggregation scheme by using the aggregated-MAC protocol data unit (A-MPDU) which works with the IEEE 802.15.4 MAC layer. To implement the scheme accurately, we develop a traffic patterns analysis mechanism to understand the requirements of the sensor nodes in patient monitoring systems, then model the channel access to find the performance gap on the basis of obtained requirements, finally propose the design based on the needs of patient monitoring systems. The mechanism is initially verified using numerical modelling and then simulation is conducted using NS2.29, Castalia 3.2 and OMNeT++. The proposed scheme provides the optimal performance considering the required Qo

    Reliable, Context-Aware and Energy-Efficient Architecture for Wireless Body Area Networks in Sports Applications

    Get PDF
    RÉSUMÉ Un RĂ©seau Corporel Sans Fil (RCSF, Wireless Body Area Network en anglais ou WBAN) permet de collecter de l'information Ă  partir de capteurs corporels. Cette information est envoyĂ©e Ă  un hub qui la transforme et qui peut aussi effectuer d'autres fonctions comme gĂ©rer des Ă©vĂ©nements corporels, fusionner les donnĂ©es Ă  partir des capteurs, percevoir d’autres paramĂštres, exĂ©cuter les fonctions d’une interface d’utilisateur, et faire un lien vers des infrastructures de plus haut niveau et d’autres parties prenantes. La rĂ©duction de la consommation d'Ă©nergie d’un RCSF est un des aspects les plus importants qui doit ĂȘtre amĂ©liorĂ© lors de sa conception. Cet aspect peut impliquer le dĂ©veloppement de protocoles de ContrĂŽles d'AccĂšs au Support (CAS, Media Access Control en anglais ou MAC), protocoles de transport et de routage plus efficients. Le contrĂŽle de la congestion est un autre des facteurs les plus importants dans la conception d’un RCSF, parce que la congestion influe directement sur la QualitĂ© De Service (QDS, Quality of Service en anglais ou QoS) et l’efficience en Ă©nergie du rĂ©seau. La congestion dans un RCSF peut produire une grande perte de paquets et une haute consommation d’énergie. La QDS est directement impactĂ©e par la perte de paquets. L’implĂ©mentation de mesures additionnelles est nĂ©cessaire pour attĂ©nuer l’impact sur la communication des RCSF. Les protocoles de CAS pour RCSF devraient permettre aux capteurs corporels d’accĂ©der rapidement au canal de communication et d’envoyer les donnĂ©es au hub, surtout pour les Ă©vĂ©nements urgents tout en rĂ©duisant la consommation d’énergie. Les protocoles de transport pour RCSF doivent fournir de la fiabilitĂ© bout-Ă -bout et de la QDS pour tout le rĂ©seau. Cette tĂąche peut ĂȘtre accomplie par la rĂ©duction du ratio de perte de paquets (Packet Loss Ratio en anglais ou PLR) et de la latence tout en gardant l'Ă©quitĂ© et la faible consommation d'Ă©nergie entre les noeuds. Le standard IEEE 802.15.6 suggĂšre un protocole de CAS qui est destinĂ© Ă  ĂȘtre applicable Ă  tous les types de RCSF; toutefois, ce protocole peut ĂȘtre amĂ©liorĂ© pour les RCSF utilisĂ©s dans le domaine du sport, oĂč la gestion du trafic pourrait ĂȘtre diffĂ©rente d’autres rĂ©seaux. Le standard IEEE 802.15.6 comprend la QDS, mais cela ne suggĂšre aucun protocole de transport ou systĂšme de contrĂŽle du dĂ©bit. Le but principal de ce projet de recherche est de concevoir une architecture pour RCSF en trois phases : (i) Conception d’un mĂ©canisme sensible au contexte et efficient en Ă©nergie pour fournir une QDS aux RCSF; (ii) Conception d’un mĂ©canisme fiable et efficient en Ă©nergie pour fournir une rĂ©cupĂ©ration des paquets perdus et de l’équitĂ© dans les RCSF; et (iii) Conception d’un systĂšme de contrĂŽle du dĂ©bit sensible au contexte pour fournir un contrĂŽle de congestion aux RCSF. Finalement, ce projet de recherche propose une architecture fiable, sensible au contexte et efficiente en Ă©nergie pour RCSF utilisĂ©s dans le domaine du sport. Cette architecture fait face Ă  quatre dĂ©fis : l'efficacitĂ© de l'Ă©nergie, la sensibilitĂ© au contexte, la qualitĂ© de service et la fiabilitĂ©. La mise en place de cette solution aidera Ă  l’amĂ©lioration des compĂ©tences, de la performance, de l’endurance et des protocoles d’entraĂźnement des athlĂštes, ainsi qu’à la dĂ©tection des points faibles. Cette solution pourrait ĂȘtre prolongĂ©e Ă  l’amĂ©lioration de la qualitĂ© de vie des enfants, des personnes malades ou ĂągĂ©es, ou encore aux domaines militaires, de la sĂ©curitĂ© et du divertissement. L’évaluation des protocoles et schĂ©mas proposĂ©s a Ă©tĂ© faite par simulations programmĂ©es avec le simulateur OMNeT++ et le systĂšme Castalia. PremiĂšrement, le protocole de CAS proposĂ© a Ă©tĂ© comparĂ© avec les protocoles de CAS suivants : IEEE 802.15.6, IEEE 802.15.4 et T-MAC (Timeout MAC). DeuxiĂšmement, le protocole de CAS proposĂ© a Ă©tĂ© comparĂ© avec le standard IEEE 802.15.6 avec et sans l’utilisation du protocole de transport proposĂ©. Finalement, le protocole de CAS proposĂ© et le standard IEEE 802.15.6 ont Ă©tĂ© comparĂ©s avec et sans l’utilisation du systĂšme de contrĂŽle du dĂ©bit proposĂ©. Le protocole de CAS proposĂ© surpasse les protocoles de CAS IEEE 802.15.6, IEEE 802.15.4 et T-MAC dans le pourcentage de pertes de paquets d’urgence et normaux, l’efficacitĂ© en Ă©nergie, et la latence du trafic d’urgence et du trafic normal. Le protocole de CAS proposĂ© utilisĂ© avec le protocole du transport proposĂ© surpasse la performance du standard IEEE 802.15.6 dans le pourcentage de perte de paquets avec ou sans trafic d’urgence, l’efficacitĂ© en Ă©nergie, et la latence du trafic normal. Le systĂšme de contrĂŽle du dĂ©bit proposĂ© a amĂ©liorĂ© la performance du protocole de CAS proposĂ© et du standard IEEE 802.15.6 dans le pourcentage de perte de paquets avec ou sans trafic d’urgence, l’efficacitĂ© en Ă©nergie, et la latence du trafic d’urgence.----------ABSTRACT Information collected from body sensors in a Wireless Body Area Network (WBAN) is sent to a hub or coordinator which processes the information and can also perform other functions such as managing body events, merging data from sensors, sensing other parameters, performing the functions of a user interface and bridging the WBAN to higher-level infrastructure and other stakeholders. The reduction of the power consumption of a WBAN is one of the most important aspects to be improved when designing a WBAN. This challenge might imply the development of more efficient Medium Access Control (MAC), transport and routing protocols. Congestion control is another of the most important factors when a WBAN is designed, due to its direct impact in the Quality of Service (QoS) and the energy efficiency of the network. The presence of congestion in a WBAN can produce a big packet loss and high energy consumption. The QoS is also impacted directly by the packet loss. The implementation of additional measures is necessary to mitigate the impact on WBAN communications. The MAC protocols for WBANs should allow body sensors to get quick access to the channel and send data to the hub, especially in emergency events while reducing the power consumption. The transport protocols for WBANs must provide end-to-end reliability and QoS for the whole network. This task can be accomplished through the reduction of both the Packet Loss Ratio (PLR) and the latency while keeping fairness and low power consumption between nodes. The IEEE 802.15.6 standard suggests a MAC protocol which is intended to be applicable for all kinds of WBANs. Nonetheless, it could be improved for sports WBANs where the traffic-types handling could be different from other networks. The IEEE 802.15.6 standard supports QoS, but it does not suggest any transport protocol or rate control scheme. The main objective of this research project is to design an architecture for WBANs in three phases: (i) Designing a context-aware and energy-efficient mechanism for providing QoS in WBANs; (ii) Designing a reliable and energy-efficient mechanism to provide packet loss recovery and fairness in WBANs; and (iii) Designing a context-aware rate control scheme to provide congestion control in WBANs. Finally, this research project proposes a reliable, context-aware and energy-efficient architecture for WBANs used in sports applications, facing four challenges: energy efficiency, context awareness, quality of service and reliability. The benefits of this solution will help to improve skills, performance, endurance and training protocols of athletes, and deficiency detection. Also, it could be extended to enhance the quality of life of children, ill and elderly people, and to security, military and entertainment fields. The evaluation of the proposed protocols and schemes was made through simulations programed in the OMNeT++ simulator and the Castalia framework. First, the proposed MAC protocol was compared against the IEEE 802.15.6 MAC protocol, the IEEE 802.15.4 MAC protocol and the T-MAC (Timeout MAC) protocol. Second, the proposed MAC protocol was compared with the IEEE 802.15.6 standard with and without the use of the proposed transport protocol. Finally, both the proposed MAC protocol and the IEEE 802.15.6 standard were compared with and without the use of the proposed rate control scheme. The proposed MAC protocol outperforms the IEEE 802.15.6 MAC protocol, the IEEE 802.15.4 MAC protocol and the T-MAC protocol in the percentage of emergency and normal packet loss, the energy effectiveness, and the latency of emergency and normal traffic. The proposed MAC protocol working along with the proposed transport protocol outperforms the IEEE 802.15.6 standard in the percentage of the packet loss with or without emergency traffic, the energy effectiveness, and the latency of normal traffic. The proposed rate control scheme improved the performance of both the proposed MAC protocol and the IEEE 802.15.6 standard in the percentage of the packet loss with or without emergency traffic, the energy effectiveness and the latency of emergency traffic
    • 

    corecore