1,358 research outputs found

    Proportional Values for Cooperative Games

    Get PDF

    Optimal Favoritism in All-Pay Auctions and Lottery Contests

    Get PDF
    We analyze the revenue-enhancing potential of favoring specific contestants in complete-information all-pay auctions and lottery contests with several heterogeneous contestants. Two instruments of favoritism are considered: head starts that are added to the bids of specific contestants and multiplicative biases that give idiosyncratic weights to the bids. In the all-pay auction, head starts are more effective than biases while optimally combining both instruments even yields first-best revenue. In the lottery contest, head starts are less effective than biases and combining both instruments cannot further increase revenue. As all-pay auctions revenue-dominate lottery contests under optimal biases, we thus obtain an unambiguous revenue-ranking of all six combinations of contest formats and instruments

    Cloud-based Quadratic Optimization with Partially Homomorphic Encryption

    Get PDF
    The development of large-scale distributed control systems has led to the outsourcing of costly computations to cloud-computing platforms, as well as to concerns about privacy of the collected sensitive data. This paper develops a cloud-based protocol for a quadratic optimization problem involving multiple parties, each holding information it seeks to maintain private. The protocol is based on the projected gradient ascent on the Lagrange dual problem and exploits partially homomorphic encryption and secure multi-party computation techniques. Using formal cryptographic definitions of indistinguishability, the protocol is shown to achieve computational privacy, i.e., there is no computationally efficient algorithm that any involved party can employ to obtain private information beyond what can be inferred from the party's inputs and outputs only. In order to reduce the communication complexity of the proposed protocol, we introduced a variant that achieves this objective at the expense of weaker privacy guarantees. We discuss in detail the computational and communication complexity properties of both algorithms theoretically and also through implementations. We conclude the paper with a discussion on computational privacy and other notions of privacy such as the non-unique retrieval of the private information from the protocol outputs

    Energy-Efficient Scheduling and Power Allocation in Downlink OFDMA Networks with Base Station Coordination

    Full text link
    This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular OFDMA system. Three definitions of the energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. %The performance of both an isolated and a non-isolated cluster of coordinated base stations is examined in the numerical experiments. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides a large saving in terms of dissipated energy. Also, the performance gap among the considered resource allocation strategies reduces as the out-of-cluster interference increases.Comment: to appear on IEEE Transactions on Wireless Communication
    • …
    corecore