70 research outputs found

    Target Detection Performance Bounds in Compressive Imaging

    Get PDF
    This paper describes computationally efficient approaches and associated theoretical performance guarantees for the detection of known targets and anomalies from few projection measurements of the underlying signals. The proposed approaches accommodate signals of different strengths contaminated by a colored Gaussian background, and perform detection without reconstructing the underlying signals from the observations. The theoretical performance bounds of the target detector highlight fundamental tradeoffs among the number of measurements collected, amount of background signal present, signal-to-noise ratio, and similarity among potential targets coming from a known dictionary. The anomaly detector is designed to control the number of false discoveries. The proposed approach does not depend on a known sparse representation of targets; rather, the theoretical performance bounds exploit the structure of a known dictionary of targets and the distance preservation property of the measurement matrix. Simulation experiments illustrate the practicality and effectiveness of the proposed approaches.Comment: Submitted to the EURASIP Journal on Advances in Signal Processin

    How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study

    Get PDF
    Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these models are also equipped with encoding modules, which, after weakly supervised training, could be, in principle, exploited for the extraction of hidden features from the input data. At the present time, how these extracted features could be effectively exploited for classification tasks is still an unexplored field. Hence, motivated by this consideration, in this paper, we develop and numerically test the performance of a novel inference engine that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for the detection of COVID-19 disease from other lung diseases in computer tomography (CT) scans. In this respect, the main contributions of the paper are twofold. First, we develop a kernel density estimation (KDE)-based inference method, which, in the training phase, leverages the hidden features extracted by BiGANs and CycleGANs for estimating the (a priori unknown) probability density function (PDF) of the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a target COVID-PDF for the detection of COVID diseases. As a second major contribution, we numerically evaluate and compare the classification accuracies of the implemented BiGAN and CycleGAN models against the ones of some state-of-the-art methods, which rely on the unsupervised training of convolutional autoencoders (CAEs) for attaining feature extraction. The performance comparisons are carried out by considering a spectrum of different training loss functions and distance metrics. The obtained classification accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models outperform the corresponding ones of the considered benchmark CAE-based models of about 16% (resp., 14%)

    Semi-supervised and unsupervised kernel-based novelty detection with application to remote sensing images

    Get PDF
    The main challenge of new information technologies is to retrieve intelligible information from the large volume of digital data gathered every day. Among the variety of existing data sources, the satellites continuously observing the surface of the Earth are key to the monitoring of our environment. The new generation of satellite sensors are tremendously increasing the possibilities of applications but also increasing the need for efficient processing methodologies in order to extract information relevant to the users' needs in an automatic or semi-automatic way. This is where machine learning comes into play to transform complex data into simplified products such as maps of land-cover changes or classes by learning from data examples annotated by experts. These annotations, also called labels, may actually be difficult or costly to obtain since they are established on the basis of ground surveys. As an example, it is extremely difficult to access a region recently flooded or affected by wildfires. In these situations, the detection of changes has to be done with only annotations from unaffected regions. In a similar way, it is difficult to have information on all the land-cover classes present in an image while being interested in the detection of a single one of interest. These challenging situations are called novelty detection or one-class classification in machine learning. In these situations, the learning phase has to rely only on a very limited set of annotations, but can exploit the large set of unlabeled pixels available in the images. This setting, called semi-supervised learning, allows significantly improving the detection. In this Thesis we address the development of methods for novelty detection and one-class classification with few or no labeled information. The proposed methodologies build upon the kernel methods, which take place within a principled but flexible framework for learning with data showing potentially non-linear feature relations. The thesis is divided into two parts, each one having a different assumption on the data structure and both addressing unsupervised (automatic) and semi-supervised (semi-automatic) learning settings. The first part assumes the data to be formed by arbitrary-shaped and overlapping clusters and studies the use of kernel machines, such as Support Vector Machines or Gaussian Processes. An emphasis is put on the robustness to noise and outliers and on the automatic retrieval of parameters. Experiments on multi-temporal multispectral images for change detection are carried out using only information from unchanged regions or none at all. The second part assumes high-dimensional data to lie on multiple low dimensional structures, called manifolds. We propose a method seeking a sparse and low-rank representation of the data mapped in a non-linear feature space. This representation allows us to build a graph, which is cut into several groups using spectral clustering. For the semi-supervised case where few labels of one class of interest are available, we study several approaches incorporating the graph information. The class labels can either be propagated on the graph, constrain spectral clustering or used to train a one-class classifier regularized by the given graph. Experiments on the unsupervised and oneclass classification of hyperspectral images demonstrate the effectiveness of the proposed approaches

    Spectral-Spatial Neural Networks and Probabilistic Graph Models for Hyperspectral Image Classification

    Get PDF
    Pixel-wise hyperspectral image (HSI) classification has been actively studied since it shares similar characteristics with related computer vision tasks, including image classification, object detection, and semantic segmentation, but also possesses inherent differences. The research surrounding HSI classification sheds light on an approach to bridge computer vision and remote sensing. Modern deep neural networks dominate and repeatedly set new records in all image recognition challenges, largely due to their excellence in extracting discriminative features through multi-layer nonlinear transformation. However, three challenges hinder the direct adoption of convolutional neural networks (CNNs) for HSI classification. First, typical HSIs contain hundreds of spectral channels that encode abundant pixel-wise spectral information, leading to the curse of dimensionality. Second, HSIs usually have relatively small numbers of annotated pixels for training along with large numbers of unlabeled pixels, resulting in the problem of generalization. Third, the scarcity of annotations and the complexity of HSI data induce noisy classification maps, which are a common issue in various types of remotely sensed data interpretation. Recent studies show that taking the data attributes into the designing of fundamental components of deep neural networks can improve their representational capacity and then facilitates these models to achieve better recognition performance. To the best of our knowledge, no research has exploited this finding or proposed corresponding models for supervised HSI classification given enough labeled HSI data. In cases of limited labeled HSI samples for training, conditional random fields (CRFs) are an effective graph model to impose data-agnostic constraints upon the intermediate outputs of trained discriminators. Although CRFs have been widely used to enhance HSI classification performance, the integration of deep learning and probabilistic graph models in the framework of semi-supervised learning remains an open question. To this end, this thesis presents supervised spectral-spatial residual networks (SSRNs) and semi-supervised generative adversarial network (GAN) -based models that account for the characteristics of HSIs and make three main contributions. First, spectral and spatial convolution layers are introduced to learn representative HSI features for supervised learning models. Second, generative adversarial networks (GANs) composed of spectral/spatial convolution and transposed-convolution layers are proposed to take advantage of adversarial training using limited amounts of labeled data for semi-supervised learning. Third, fully-connected CRFs are adopted to impose smoothness constraints on the predictions of the trained discriminators of GANs to enhance HSI classification performance. Empirical evidence acquired by experimental comparison to state-of-the-art models validates the effectiveness and generalizability of SSRN, SS-GAN, and GAN-CRF models

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Spectral-Spatial Neural Networks and Probabilistic Graph Models for Hyperspectral Image Classification

    Get PDF
    Pixel-wise hyperspectral image (HSI) classification has been actively studied since it shares similar characteristics with related computer vision tasks, including image classification, object detection, and semantic segmentation, but also possesses inherent differences. The research surrounding HSI classification sheds light on an approach to bridge computer vision and remote sensing. Modern deep neural networks dominate and repeatedly set new records in all image recognition challenges, largely due to their excellence in extracting discriminative features through multi-layer nonlinear transformation. However, three challenges hinder the direct adoption of convolutional neural networks (CNNs) for HSI classification. First, typical HSIs contain hundreds of spectral channels that encode abundant pixel-wise spectral information, leading to the curse of dimensionality. Second, HSIs usually have relatively small numbers of annotated pixels for training along with large numbers of unlabeled pixels, resulting in the problem of generalization. Third, the scarcity of annotations and the complexity of HSI data induce noisy classification maps, which are a common issue in various types of remotely sensed data interpretation. Recent studies show that taking the data attributes into the designing of fundamental components of deep neural networks can improve their representational capacity and then facilitates these models to achieve better recognition performance. To the best of our knowledge, no research has exploited this finding or proposed corresponding models for supervised HSI classification given enough labeled HSI data. In cases of limited labeled HSI samples for training, conditional random fields (CRFs) are an effective graph model to impose data-agnostic constraints upon the intermediate outputs of trained discriminators. Although CRFs have been widely used to enhance HSI classification performance, the integration of deep learning and probabilistic graph models in the framework of semi-supervised learning remains an open question. To this end, this thesis presents supervised spectral-spatial residual networks (SSRNs) and semi-supervised generative adversarial network (GAN) -based models that account for the characteristics of HSIs and make three main contributions. First, spectral and spatial convolution layers are introduced to learn representative HSI features for supervised learning models. Second, generative adversarial networks (GANs) composed of spectral/spatial convolution and transposed-convolution layers are proposed to take advantage of adversarial training using limited amounts of labeled data for semi-supervised learning. Third, fully-connected CRFs are adopted to impose smoothness constraints on the predictions of the trained discriminators of GANs to enhance HSI classification performance. Empirical evidence acquired by experimental comparison to state-of-the-art models validates the effectiveness and generalizability of SSRN, SS-GAN, and GAN-CRF models

    Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Get PDF
    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems

    An uncertainty prediction approach for active learning - application to earth observation

    Get PDF
    Mapping land cover and land usage dynamics are crucial in remote sensing since farmers are encouraged to either intensify or extend crop use due to the ongoing rise in the world’s population. A major issue in this area is interpreting and classifying a scene captured in high-resolution satellite imagery. Several methods have been put forth, including neural networks which generate data-dependent models (i.e. model is biased toward data) and static rule-based approaches with thresholds which are limited in terms of diversity(i.e. model lacks diversity in terms of rules). However, the problem of having a machine learning model that, given a large amount of training data, can classify multiple classes over different geographic Sentinel-2 imagery that out scales existing approaches remains open. On the other hand, supervised machine learning has evolved into an essential part of many areas due to the increasing number of labeled datasets. Examples include creating classifiers for applications that recognize images and voices, anticipate traffic, propose products, act as a virtual personal assistant and detect online fraud, among many more. Since these classifiers are highly dependent from the training datasets, without human interaction or accurate labels, the performance of these generated classifiers with unseen observations is uncertain. Thus, researchers attempted to evaluate a number of independent models using a statistical distance. However, the problem of, given a train-test split and classifiers modeled over the train set, identifying a prediction error using the relation between train and test sets remains open. Moreover, while some training data is essential for supervised machine learning, what happens if there is insufficient labeled data? After all, assigning labels to unlabeled datasets is a time-consuming process that may need significant expert human involvement. When there aren’t enough expert manual labels accessible for the vast amount of openly available data, active learning becomes crucial. However, given a large amount of training and unlabeled datasets, having an active learning model that can reduce the training cost of the classifier and at the same time assist in labeling new data points remains an open problem. From the experimental approaches and findings, the main research contributions, which concentrate on the issue of optical satellite image scene classification include: building labeled Sentinel-2 datasets with surface reflectance values; proposal of machine learning models for pixel-based image scene classification; proposal of a statistical distance based Evidence Function Model (EFM) to detect ML models misclassification; and proposal of a generalised sampling approach for active learning that, together with the EFM enables a way of determining the most informative examples. Firstly, using a manually annotated Sentinel-2 dataset, Machine Learning (ML) models for scene classification were developed and their performance was compared to Sen2Cor the reference package from the European Space Agency – a micro-F1 value of 84% was attained by the ML model, which is a significant improvement over the corresponding Sen2Cor performance of 59%. Secondly, to quantify the misclassification of the ML models, the Mahalanobis distance-based EFM was devised. This model achieved, for the labeled Sentinel-2 dataset, a micro-F1 of 67.89% for misclassification detection. Lastly, EFM was engineered as a sampling strategy for active learning leading to an approach that attains the same level of accuracy with only 0.02% of the total training samples when compared to a classifier trained with the full training set. With the help of the above-mentioned research contributions, we were able to provide an open-source Sentinel-2 image scene classification package which consists of ready-touse Python scripts and a ML model that classifies Sentinel-2 L1C images generating a 20m-resolution RGB image with the six studied classes (Cloud, Cirrus, Shadow, Snow, Water, and Other) giving academics a straightforward method for rapidly and effectively classifying Sentinel-2 scene images. Additionally, an active learning approach that uses, as sampling strategy, the observed prediction uncertainty given by EFM, will allow labeling only the most informative points to be used as input to build classifiers; Sumário: Uma Abordagem de Previsão de Incerteza para Aprendizagem Ativa – Aplicação à Observação da Terra O mapeamento da cobertura do solo e a dinâmica da utilização do solo são cruciais na deteção remota uma vez que os agricultores são incentivados a intensificar ou estender as culturas devido ao aumento contínuo da população mundial. Uma questão importante nesta área é interpretar e classificar cenas capturadas em imagens de satélite de alta resolução. Várias aproximações têm sido propostas incluindo a utilização de redes neuronais que produzem modelos dependentes dos dados (ou seja, o modelo é tendencioso em relação aos dados) e aproximações baseadas em regras que apresentam restrições de diversidade (ou seja, o modelo carece de diversidade em termos de regras). No entanto, a criação de um modelo de aprendizagem automática que, dada uma uma grande quantidade de dados de treino, é capaz de classificar, com desempenho superior, as imagens do Sentinel-2 em diferentes áreas geográficas permanece um problema em aberto. Por outro lado, têm sido utilizadas técnicas de aprendizagem supervisionada na resolução de problemas nas mais diversas áreas de devido à proliferação de conjuntos de dados etiquetados. Exemplos disto incluem classificadores para aplicações que reconhecem imagem e voz, antecipam tráfego, propõem produtos, atuam como assistentes pessoais virtuais e detetam fraudes online, entre muitos outros. Uma vez que estes classificadores são fortemente dependente do conjunto de dados de treino, sem interação humana ou etiquetas precisas, o seu desempenho sobre novos dados é incerta. Neste sentido existem propostas para avaliar modelos independentes usando uma distância estatística. No entanto, o problema de, dada uma divisão de treino-teste e um classificador, identificar o erro de previsão usando a relação entre aqueles conjuntos, permanece aberto. Mais ainda, embora alguns dados de treino sejam essenciais para a aprendizagem supervisionada, o que acontece quando a quantidade de dados etiquetados é insuficiente? Afinal, atribuir etiquetas é um processo demorado e que exige perícia, o que se traduz num envolvimento humano significativo. Quando a quantidade de dados etiquetados manualmente por peritos é insuficiente a aprendizagem ativa torna-se crucial. No entanto, dada uma grande quantidade dados de treino não etiquetados, ter um modelo de aprendizagem ativa que reduz o custo de treino do classificador e, ao mesmo tempo, auxilia a etiquetagem de novas observações permanece um problema em aberto. A partir das abordagens e estudos experimentais, as principais contribuições deste trabalho, que se concentra na classificação de cenas de imagens de satélite óptico incluem: criação de conjuntos de dados Sentinel-2 etiquetados, com valores de refletância de superfície; proposta de modelos de aprendizagem automática baseados em pixels para classificação de cenas de imagens de satétite; proposta de um Modelo de Função de Evidência (EFM) baseado numa distância estatística para detetar erros de classificação de modelos de aprendizagem; e proposta de uma abordagem de amostragem generalizada para aprendizagem ativa que, em conjunto com o EFM, possibilita uma forma de determinar os exemplos mais informativos. Em primeiro lugar, usando um conjunto de dados Sentinel-2 etiquetado manualmente, foram desenvolvidos modelos de Aprendizagem Automática (AA) para classificação de cenas e seu desempenho foi comparado com o do Sen2Cor – o produto de referência da Agência Espacial Europeia – tendo sido alcançado um valor de micro-F1 de 84% pelo classificador, o que representa uma melhoria significativa em relação ao desempenho Sen2Cor correspondente, de 59%. Em segundo lugar, para quantificar o erro de classificação dos modelos de AA, foi concebido o Modelo de Função de Evidência baseado na distância de Mahalanobis. Este modelo conseguiu, para o conjunto de dados etiquetado do Sentinel-2 um micro-F1 de 67,89% na deteção de classificação incorreta. Por fim, o EFM foi utilizado como uma estratégia de amostragem para a aprendizagem ativa, uma abordagem que permitiu atingir o mesmo nível de desempenho com apenas 0,02% do total de exemplos de treino quando comparado com um classificador treinado com o conjunto de treino completo. Com a ajuda das contribuições acima mencionadas, foi possível desenvolver um pacote de código aberto para classificação de cenas de imagens Sentinel-2 que, utilizando num conjunto de scripts Python, um modelo de classificação, e uma imagem Sentinel-2 L1C, gera a imagem RGB correspondente (com resolução de 20m) com as seis classes estudadas (Cloud, Cirrus, Shadow, Snow, Water e Other), disponibilizando à academia um método direto para a classificação de cenas de imagens do Sentinel-2 rápida e eficaz. Além disso, a abordagem de aprendizagem ativa que usa, como estratégia de amostragem, a deteção de classificacão incorreta dada pelo EFM, permite etiquetar apenas os pontos mais informativos a serem usados como entrada na construção de classificadores
    corecore