4,742 research outputs found

    Collaborative sparse regression using spatially correlated supports - Application to hyperspectral unmixing

    Get PDF
    This paper presents a new Bayesian collaborative sparse regression method for linear unmixing of hyperspectral images. Our contribution is twofold; first, we propose a new Bayesian model for structured sparse regression in which the supports of the sparse abundance vectors are a priori spatially correlated across pixels (i.e., materials are spatially organised rather than randomly distributed at a pixel level). This prior information is encoded in the model through a truncated multivariate Ising Markov random field, which also takes into consideration the facts that pixels cannot be empty (i.e, there is at least one material present in each pixel), and that different materials may exhibit different degrees of spatial regularity. Secondly, we propose an advanced Markov chain Monte Carlo algorithm to estimate the posterior probabilities that materials are present or absent in each pixel, and, conditionally to the maximum marginal a posteriori configuration of the support, compute the MMSE estimates of the abundance vectors. A remarkable property of this algorithm is that it self-adjusts the values of the parameters of the Markov random field, thus relieving practitioners from setting regularisation parameters by cross-validation. The performance of the proposed methodology is finally demonstrated through a series of experiments with synthetic and real data and comparisons with other algorithms from the literature

    Robust Linear Spectral Unmixing using Anomaly Detection

    Full text link
    This paper presents a Bayesian algorithm for linear spectral unmixing of hyperspectral images that accounts for anomalies present in the data. The model proposed assumes that the pixel reflectances are linear mixtures of unknown endmembers, corrupted by an additional nonlinear term modelling anomalies and additive Gaussian noise. A Markov random field is used for anomaly detection based on the spatial and spectral structures of the anomalies. This allows outliers to be identified in particular regions and wavelengths of the data cube. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint linear unmixing and anomaly detection algorithm. Simulations conducted with synthetic and real hyperspectral images demonstrate the accuracy of the proposed unmixing and outlier detection strategy for the analysis of hyperspectral images

    Estimation of phase noise in oscillators with colored noise sources

    Get PDF
    In this letter we study the design of algorithms for estimation of phase noise (PN) with colored noise sources. A soft-input maximum a posteriori PN estimator and a modified soft-input extended Kalman smoother are proposed. The performance of the proposed algorithms are compared against those studied in the literature, in terms of mean square error of PN estimation, and symbol error rate of the considered communication system. The comparisons show that considerable performance gains can be achieved by designing estimators that employ correct knowledge of the PN statistics

    A Hybrid Approach to Joint Estimation of Channel and Antenna impedance

    Full text link
    This paper considers a hybrid approach to joint estimation of channel information and antenna impedance, for single-input, single-output channels. Based on observation of training sequences via synchronously switched load at the receiver, we derive joint maximum a posteriori and maximum-likelihood (MAP/ML) estimators for channel and impedance over multiple packets. We investigate important properties of these estimators, e.g., bias and efficiency. We also explore the performance of these estimators through numerical examples.Comment: 6 pages, two columns, 6 figures. References update
    • …
    corecore