950 research outputs found

    On a selection principle for multivalued semiclassical flows

    Get PDF
    We study the semiclassical behaviour of solutions of a Schr ̈odinger equation with a scalar po- tential displaying a conical singularity. When a pure state interacts strongly with the singularity of the flow, there are several possible classical evolutions, and it is not known whether the semiclassical limit cor- responds to one of them. Based on recent results, we propose that one of the classical evolutions captures the semiclassical dynamics; moreover, we propose a selection principle for the straightforward calculation of the regularized semiclassical asymptotics. We proceed to investigate numerically the validity of the proposed scheme, by employing a solver based on a posteriori error control for the Schr ̈odinger equation. Thus, for the problems we study, we generate rigorous upper bounds for the error in our asymptotic approximation. For 1-dimensional problems without interference, we obtain compelling agreement between the regularized asymptotics and the full solution. In problems with interference, there is a quantum effect that seems to survive in the classical limit. We discuss the scope of applicability of the proposed regularization approach, and formulate a precise conjecture

    Adaptive Reconstruction for Electrical Impedance Tomography with a Piecewise Constant Conductivity

    Full text link
    In this work we propose and analyze a numerical method for electrical impedance tomography of recovering a piecewise constant conductivity from boundary voltage measurements. It is based on standard Tikhonov regularization with a Modica-Mortola penalty functional and adaptive mesh refinement using suitable a posteriori error estimators of residual type that involve the state, adjoint and variational inequality in the necessary optimality condition and a separate marking strategy. We prove the convergence of the adaptive algorithm in the following sense: the sequence of discrete solutions contains a subsequence convergent to a solution of the continuous necessary optimality system. Several numerical examples are presented to illustrate the convergence behavior of the algorithm.Comment: 26 pages, 12 figure

    A Posteriori Error Control for the Binary Mumford-Shah Model

    Full text link
    The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin's functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the L2L^2-norm. In combination with a suitable cut out argument, a fully practical estimate for the area mismatch is derived. This estimate is incorporated in an adaptive meshing strategy. Two different adaptive primal-dual finite element schemes, and the most frequently used finite difference discretization are investigated and compared. Numerical experiments show qualitative and quantitative properties of the estimates and demonstrate their usefulness in practical applications.Comment: 18 pages, 7 figures, 1 tabl

    Singular solutions, graded meshes, and adaptivity for total-variation regularized minimization problems

    Full text link
    Recent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems require the existence of a Lipschitz continuous dual solution. We discuss the validity of this condition and devise numerical methods using locally refined meshes that lead to improved convergence rates despite the occurrence of discontinuities. It turns out that nearly linear convergence is possible on suitably constructed meshes

    Unconditional stability of semi-implicit discretizations of singular flows

    Full text link
    A popular and efficient discretization of evolutions involving the singular pp-Laplace operator is based on a factorization of the differential operator into a linear part which is treated implicitly and a regularized singular factor which is treated explicitly. It is shown that an unconditional energy stability property for this semi-implicit time stepping strategy holds. Related error estimates depend critically on a required regularization parameter. Numerical experiments reveal reduced experimental convergence rates for smaller regularization parameters and thereby confirm that this dependence cannot be avoided in general.Comment: 21 pages, 8 figure

    Regularized semiclassical limits:linear flows with infinite Lyapunov exponents

    Get PDF
    Semiclassical asymptotics for linear Schr\"odinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P. L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as x-|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for x-|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM
    corecore