521 research outputs found

    POD model order reduction with space-adapted snapshots for incompressible flows

    Full text link
    We consider model order reduction based on proper orthogonal decomposition (POD) for unsteady incompressible Navier-Stokes problems, assuming that the snapshots are given by spatially adapted finite element solutions. We propose two approaches of deriving stable POD-Galerkin reduced-order models for this context. In the first approach, the pressure term and the continuity equation are eliminated by imposing a weak incompressibility constraint with respect to a pressure reference space. In the second approach, we derive an inf-sup stable velocity-pressure reduced-order model by enriching the velocity reduced space with supremizers computed on a velocity reference space. For problems with inhomogeneous Dirichlet conditions, we show how suitable lifting functions can be obtained from standard adaptive finite element computations. We provide a numerical comparison of the considered methods for a regularized lid-driven cavity problem

    IFISS : a computational laboratory for investigating incompressible flow problems

    Get PDF
    The IFISS Incompressible Flow & Iterative Solver Software package contains software which can be run with MATLAB or Octave to create a computational laboratory for the interactive numerical study of incompressible flow problems. It includes algorithms for discretization by mixed finite element methods and a posteriori error estimation of the computed solutions, together with state-of-the-art preconditioned iterative solvers for the resulting discrete linear equation systems. In this paper we give a flavour of the code's main features and illustrate its applicability using several case studies. We aim to show that IFISS can be a valuable tool in both teaching and research

    Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM

    Get PDF
    The computational cost of parametric studies currently represents the major limitation to the application of simulation-based engineering techniques in a daily industrial environment. This work presents the first nonintrusive implementation of the proper generalised decomposition (PGD) in OpenFOAM, for the approximation of parametrised laminar incompressible Navier–Stokes equations. The key feature of this approach is the seamless integration of a reduced order model (ROM) in the framework of an industrially validated computational fluid dynamics software. This is of special importance in an industrial environment because in the online phase of the PGD ROM the description of the flow for a specific set of parameters is obtained simply via interpolation of the generalised solution, without the need of any extra solution step. On the one hand, the spatial problems arising from the PGD separation of the unknowns are treated using the classical solution strategies of OpenFOAM, namely the semi-implicit method for pressure linked equations (SIMPLE) algorithm. On the other hand, the parametric iteration is solved via a collocation approach. The resulting ROM is applied to several benchmark tests of laminar incompressible Navier–Stokes flows, in two and three dimensions, with different parameters affecting the flow features. Eventually, the capability of the proposed strategy to treat industrial problems is verified by applying the methodology to a parametrised flow control in a realistic geometry of interest for the automotive industry

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    Model Order Reduction in Fluid Dynamics: Challenges and Perspectives

    Get PDF
    This chapter reviews techniques of model reduction of fluid dynamics systems. Fluid systems are known to be difficult to reduce efficiently due to several reasons. First of all, they exhibit strong nonlinearities — which are mainly related either to nonlinear convection terms and/or some geometric variability — that often cannot be treated by simple linearization. Additional difficulties arise when attempting model reduction of unsteady flows, especially when long-term transient behavior needs to be accurately predicted using reduced order models and more complex features, such as turbulence or multiphysics phenomena, have to be taken into consideration. We first discuss some general principles that apply to many parametric model order reduction problems, then we apply them on steady and unsteady viscous flows modelled by the incompressible Navier-Stokes equations. We address questions of inf-sup stability, certification through error estimation, computational issues and — in the unsteady case — long-time stability of the reduced model. Moreover, we provide an extensive list of literature references

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90641/1/AIAA-53965-537.pd
    • …
    corecore