588 research outputs found

    Numerical Methods for Partial Differential Equations

    Get PDF
    These lecture notes are devoted to the numerical solution of partial differential equations (PDEs). PDEs arise in many fields and are extremely important in modeling of technical processes with applications in physics, biology, chemisty, economics, mechanical engineering, and so forth. In these notes, not only classical topics for linear PDEs such as finite differences, finite elements, error estimation, and numerical solution schemes are addressed, but also schemes for nonlinear PDEs and coupled problems up to current state-of-the-art techniques are covered. In the Winter 2020/2021 an International Class with additional funding from DAAD (German Academic Exchange Service) and local funding from the Leibniz University Hannover, has led to additional online materials such as links to youtube videos, which complement these lecture notes. This is the updated and extended Version 2. The first version was published under the DOI: https://doi.org/10.15488/9248

    Space-time Methods for Time-dependent Partial Differential Equations

    Get PDF
    Modern discretizations of time-dependent PDEs consider the full problem in the space-time cylinder and aim to overcome limitations of classical approaches such as the method of lines (first discretize in space and then solve the resulting ODE) and the Rothe method (first discretize in time and then solve the PDE). A main advantage of a holistic space-time method is the direct access to space-time adaptivity and to the backward problem (required for the dual problem in optimization or error control). Moreover, this allows for parallel solution strategies simultaneously in time and space. Several space-time concepts where proposed (different conforming and nonconforming space-time finite elements, the parareal method, wavefront relaxation etc.) but this topic has become a rapidly growing field in numerical analysis and scientific computing. In this workshop the focus is the development of adaptive and flexible space-time discretization methods for solving parabolic and hyperbolic space-time partial differential equations

    A Fast Algorithm for Parabolic PDE-based Inverse Problems Based on Laplace Transforms and Flexible Krylov Solvers

    Full text link
    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method

    Dynamical problems and phase transitions

    Get PDF
    Issued as Financial status report, Technical reports [nos. 1-12], and Final report, Project B-06-68

    Adaptive time-stepping for incompressible flow part I: scalar advection-diffusion

    Get PDF
    Even the simplest advection-diffusion problems can exhibit multiple time scales. This means that robust variable step time integrators are a prerequisite if such problems are to be efficiently solved computationally. The performance of the second order trapezoid rule using an explicit Adams–Bashforth method for error control is assessed in this work. This combination is particularly well suited to long time integration of advection-dominated problems. Herein it is shown that a stabilized implementation of the trapezoid rule leads to a very effective integrator in other situations: specifically diffusion problems with rough initial data; and general advection-diffusion problems with different physical time scales governing the system evolution
    • …
    corecore