246 research outputs found

    A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: Triangular grids

    Full text link
    A novel wetting and drying treatment for second-order Runge-Kutta discontinuous Galerkin (RKDG2) methods solving the non-linear shallow water equations is proposed. It is developed for general conforming two-dimensional triangular meshes and utilizes a slope limiting strategy to accurately model inundation. The method features a non-destructive limiter, which concurrently meets the requirements for linear stability and wetting and drying. It further combines existing approaches for positivity preservation and well-balancing with an innovative velocity-based limiting of the momentum. This limiting controls spurious velocities in the vicinity of the wet/dry interface. It leads to a computationally stable and robust scheme -- even on unstructured grids -- and allows for large time steps in combination with explicit time integrators. The scheme comprises only one free parameter, to which it is not sensitive in terms of stability. A number of numerical test cases, ranging from analytical tests to near-realistic laboratory benchmarks, demonstrate the performance of the method for inundation applications. In particular, super-linear convergence, mass-conservation, well-balancedness, and stability are verified

    Positivity-Preserving Well-Balanced Central Discontinuous Galerkin Schemes for the Euler Equations under Gravitational Fields

    Full text link
    This paper designs and analyzes positivity-preserving well-balanced (WB) central discontinuous Galerkin (CDG) schemes for the Euler equations with gravity. A distinctive feature of these schemes is that they not only are WB for a general known stationary hydrostatic solution, but also can preserve the positivity of the fluid density and pressure. The standard CDG method does not possess this feature, while directly applying some existing WB techniques to the CDG framework may not accommodate the positivity and keep other important properties at the same time. In order to obtain the WB and positivity-preserving properties simultaneously while also maintaining the conservativeness and stability of the schemes, a novel spatial discretization is devised in the CDG framework based on suitable modifications to the numerical dissipation term and the source term approximation. The modifications are based on a crucial projection operator for the stationary hydrostatic solution, which is proposed for the first time in this work. This novel projection has the same order of accuracy as the standard L2L^2-projection, can be explicitly calculated, and is easy to implement without solving any optimization problems. More importantly, it ensures that the projected stationary solution has the same cell averages on both the primal and dual meshes, which is a key to achieve the desired properties of our schemes. Based on some convex decomposition techniques, rigorous positivity-preserving analyses for the resulting WB CDG schemes are carried out. Several one- and two-dimensional numerical examples are performed to illustrate the desired properties of these schemes, including the high-order accuracy, the WB property, the robustness for simulations involving the low pressure or density, high resolution for the discontinuous solutions and the small perturbations around the equilibrium state.Comment: 57 page

    Bound-preserving and entropy-stable algebraic flux correction schemes for the shallow water equations with topography

    Full text link
    A well-designed numerical method for the shallow water equations (SWE) should ensure well-balancedness, nonnegativity of water heights, and entropy stability. For a continuous finite element discretization of a nonlinear hyperbolic system without source terms, positivity preservation and entropy stability can be enforced using the framework of algebraic flux correction (AFC). In this work, we develop a well-balanced AFC scheme for the SWE system including a topography source term. Our method preserves the lake at rest equilibrium up to machine precision. The low-order version represents a generalization of existing finite volume approaches to the finite element setting. The high-order extension is equipped with a property-preserving flux limiter. Nonnegativity of water heights is guaranteed under a standard CFL condition. Moreover, the flux-corrected space discretization satisfies a semi-discrete entropy inequality. New algorithms are proposed for realistic simulation of wetting and drying processes. Numerical examples for well-known benchmarks are presented to evaluate the performance of the scheme

    Well-balanced fifth-order finite difference Hermite WENO scheme for the shallow water equations

    Full text link
    In this paper, we propose a well-balanced fifth-order finite difference Hermite WENO (HWENO) scheme for the shallow water equations with non-flat bottom topography in pre-balanced form. For achieving the well-balance property, we adopt the similar idea of WENO-XS scheme [Xing and Shu, J. Comput. Phys., 208 (2005), 206-227.] to balance the flux gradients and the source terms. The fluxes in the original equation are reconstructed by the nonlinear HWENO reconstructions while other fluxes in the derivative equations are approximated by the high-degree polynomials directly. And an HWENO limiter is applied for the derivatives of equilibrium variables in time discretization step to control spurious oscillations which maintains the well-balance property. Instead of using a five-point stencil in the same fifth-order WENO-XS scheme, the proposed HWENO scheme only needs a compact three-point stencil in the reconstruction. Various benchmark examples in one and two dimensions are presented to show the HWENO scheme is fifth-order accuracy, preserves steady-state solution, has better resolution, is more accurate and efficient, and is essentially non-oscillatory.Comment: 24 pages, 11 figure

    Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws

    Get PDF
    The development of reliable numerical methods for the simulation of real life problems requires both a fundamental knowledge in the field of numerical analysis and a proper experience in practical applications as well as their mathematical modeling. Thus, the purpose of the workshop was to bring together experts not only from the field of applied mathematics but also from civil and mechanical engineering working in the area of modern high order methods for the solution of partial differential equations or even approximation theory necessary to improve the accuracy as well as robustness of numerical algorithms

    Energy Stable and Structure-Preserving Schemes for the Stochastic Galerkin Shallow Water Equations

    Full text link
    The shallow water flow model is widely used to describe water flows in rivers, lakes, and coastal areas. Accounting for uncertainty in the corresponding transport-dominated nonlinear PDE models presents theoretical and numerical challenges that motivate the central advances of this paper. Starting with a spatially one-dimensional hyperbolicity-preserving, positivity-preserving stochastic Galerkin formulation of the parametric/uncertain shallow water equations, we derive an entropy-entropy flux pair for the system. We exploit this entropy-entropy flux pair to construct structure-preserving second-order energy conservative, and first- and second-order energy stable finite volume schemes for the stochastic Galerkin shallow water system. The performance of the methods is illustrated on several numerical experiments
    corecore