5,935 research outputs found

    Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit

    Full text link
    We present a mathematical analysis of the asymptotic preserving scheme proposed in [M. Lemou and L. Mieussens, SIAM J. Sci. Comput., 31, pp. 334-368, 2008] for linear transport equations in kinetic and diffusive regimes. We prove that the scheme is uniformly stable and accurate with respect to the mean free path of the particles. This property is satisfied under an explicitly given CFL condition. This condition tends to a parabolic CFL condition for small mean free paths, and is close to a convection CFL condition for large mean free paths. Ou r analysis is based on very simple energy estimates

    Well-balanced and asymptotic preserving schemes for kinetic models

    Get PDF
    In this paper, we propose a general framework for designing numerical schemes that have both well-balanced (WB) and asymptotic preserving (AP) properties, for various kinds of kinetic models. We are interested in two different parameter regimes, 1) When the ratio between the mean free path and the characteristic macroscopic length ϵ\epsilon tends to zero, the density can be described by (advection) diffusion type (linear or nonlinear) macroscopic models; 2) When ϵ\epsilon = O(1), the models behave like hyperbolic equations with source terms and we are interested in their steady states. We apply the framework to three different kinetic models: neutron transport equation and its diffusion limit, the transport equation for chemotaxis and its Keller-Segel limit, and grey radiative transfer equation and its nonlinear diffusion limit. Numerical examples are given to demonstrate the properties of the schemes

    Asymptotic-Preserving Monte Carlo methods for transport equations in the diffusive limit

    Full text link
    We develop a new Monte Carlo method that solves hyperbolic transport equations with stiff terms, characterized by a (small) scaling parameter. In particular, we focus on systems which lead to a reduced problem of parabolic type in the limit when the scaling parameter tends to zero. Classical Monte Carlo methods suffer of severe time step limitations in these situations, due to the fact that the characteristic speeds go to infinity in the diffusion limit. This makes the problem a real challenge, since the scaling parameter may differ by several orders of magnitude in the domain. To circumvent these time step limitations, we construct a new, asymptotic-preserving Monte Carlo method that is stable independently of the scaling parameter and degenerates to a standard probabilistic approach for solving the limiting equation in the diffusion limit. The method uses an implicit time discretization to formulate a modified equation in which the characteristic speeds do not grow indefinitely when the scaling factor tends to zero. The resulting modified equation can readily be discretized by a Monte Carlo scheme, in which the particles combine a finite propagation speed with a time-step dependent diffusion term. We show the performance of the method by comparing it with standard (deterministic) approaches in the literature

    Exponential Runge-Kutta methods for stiff kinetic equations

    Full text link
    We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation times and avoid the solution of nonlinear systems of equations even in stiff regimes. We give sufficient conditions in order that such methods are unconditionally asymptotically stable and asymptotic preserving. Such stability properties are essential to guarantee the correct asymptotic behavior for small relaxation times. The methods also offer favorable properties such as nonnegativity of the solution and entropy inequality. For this reason, as we will show, the methods are suitable both for deterministic as well as probabilistic numerical techniques

    On the Eulerian Large Eddy Simulation of disperse phase flows: an asymptotic preserving scheme for small Stokes number flows

    Full text link
    In the present work, the Eulerian Large Eddy Simulation of dilute disperse phase flows is investigated. By highlighting the main advantages and drawbacks of the available approaches in the literature, a choice is made in terms of modelling: a Fokker-Planck-like filtered kinetic equation proposed by Zaichik et al. 2009 and a Kinetic-Based Moment Method (KBMM) based on a Gaussian closure for the NDF proposed by Vie et al. 2014. The resulting Euler-like system of equations is able to reproduce the dynamics of particles for small to moderate Stokes number flows, given a LES model for the gaseous phase, and is representative of the generic difficulties of such models. Indeed, it encounters strong constraints in terms of numerics in the small Stokes number limit, which can lead to a degeneracy of the accuracy of standard numerical methods. These constraints are: 1/as the resulting sound speed is inversely proportional to the Stokes number, it is highly CFL-constraining, and 2/the system tends to an advection-diffusion limit equation on the number density that has to be properly approximated by the designed scheme used for the whole range of Stokes numbers. Then, the present work proposes a numerical scheme that is able to handle both. Relying on the ideas introduced in a different context by Chalons et al. 2013: a Lagrange-Projection, a relaxation formulation and a HLLC scheme with source terms, we extend the approach to a singular flux as well as properly handle the energy equation. The final scheme is proven to be Asymptotic-Preserving on 1D cases comparing to either converged or analytical solutions and can easily be extended to multidimensional configurations, thus setting the path for realistic applications
    • …
    corecore