2,474 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    The future of laboratory medicine - A 2014 perspective.

    Get PDF
    Predicting the future is a difficult task. Not surprisingly, there are many examples and assumptions that have proved to be wrong. This review surveys the many predictions, beginning in 1887, about the future of laboratory medicine and its sub-specialties such as clinical chemistry and molecular pathology. It provides a commentary on the accuracy of the predictions and offers opinions on emerging technologies, economic factors and social developments that may play a role in shaping the future of laboratory medicine

    The Internet of Things: the future or the end of mechatronics.

    Get PDF
    The advent and increasing implementation of user configured and user oriented systems structured around the use of cloud configured information and the Internet of Things is presenting a new range and class of challenges to the underlying concepts of integration and transfer of functionality around which mechatronics is structured. It is suggested that the ways in which system designers and educators in particular respond to and manage these changes and challenges is going to have a significant impact on the way in which both the Internet of Things and mechatronics develop over time. The paper places the relationship between the Internet of Things and mechatronics into perspective and considers the issues and challenges facing systems designers and implementers in relation to managing the dynamics of the changes required

    Usage of Automatic Guided Vehicle Systems and Multi-agent Technology in higher education

    Get PDF
    Today, smart manufacturing is differentiated from many other initiatives by its emphasis on human ingenuity. Human capabilities must be enhanced by intelligently designing a customized solution for a specific domain. For example, Industry 4.0 is based on collaborative robots that digitize and simplify manufacturing processes. In fact, Automatic Guided Vehicles (AGVs) are widely used in intelligent industries due to their productivity, flexibility, and versatility. They are widely considered as one of the most important tools for flexible logistics in workshops. They can move materials and products without a predefined route. Many commercially available AGVs provide a self-guided navigation system to find their way to target workstations. However, many developers and producers of industrial robots face several challenges in designing AGV systems, such as the difficulty of defining a decentralized system decision as well as the discontinuity and complexity of the design process. One of the relevant research areas related to our AGV solution is the establishment of the human-machine industrial relationship and the creation of safe operation side by side

    Surface engineering by titanium particulate injection mounding

    Get PDF
    In a recent study a structural hold down component was designed and produced using the particulate injection moulding (PIM) process. The material of choice was titanium due not only to the material properties but also due to the desire to create custom made components for a state-of-the-art marine vessel. On removal from the mould the green parts were seen to have an irregular surface on the top face. The irregular surface presented no through part defects and although the surface irregularities were caused by separation of the two-phases the effect was restricted to the outer surface of the parts. In a more historic study by the author the surface properties of titanium dental implants were modified by the use of adaptive mould inserts during the moulding phase of PIM. These two contrasting studies are considered and have become the basis of a current investigation looking to engineer surface irregularities in an ordered fashion. The application of meso-machining, and additive manufacture are considered and the functionality which may arise are presented

    Emerging Technologies

    Get PDF
    This monograph investigates a multitude of emerging technologies including 3D printing, 5G, blockchain, and many more to assess their potential for use to further humanity’s shared goal of sustainable development. Through case studies detailing how these technologies are already being used at companies worldwide, author Sinan Küfeoğlu explores how emerging technologies can be used to enhance progress toward each of the seventeen United Nations Sustainable Development Goals and to guarantee economic growth even in the face of challenges such as climate change. To assemble this book, the author explored the business models of 650 companies in order to demonstrate how innovations can be converted into value to support sustainable development. To ensure practical application, only technologies currently on the market and in use actual companies were investigated. This volume will be of great use to academics, policymakers, innovators at the forefront of green business, and anyone else who is interested in novel and innovative business models and how they could help to achieve the Sustainable Development Goals. This is an open access book

    ME-EM 2020-21 Annual Report

    Get PDF
    Table of Contents Responsive Research Alumni Impact Innovative Enterprises Enrollment & Degrees Graduates Department Donors Contracts & Grants Patents & Publicationshttps://digitalcommons.mtu.edu/mechanical-annualreports/1016/thumbnail.jp
    • …
    corecore