129 research outputs found

    A CMOS analog LSI design for 5GHz MIMO system

    Get PDF
    In this paper, we discuss linear power amplifier and RC polyphase filter design in 90nm CMOS process which dominate QoS in high throughput wireless communication system. From the theoretical analysis, we show that only class A operation can be a linear power amplifier and its maximum drain efficiency reaches 67[%] in CMOS process. We also propose an RC polyphase filter (PPF) design using frequency transformation from the prototype LPF and evaluate its parasitic effect. Both power amplifier and RC PPF are fabricated using TSMC 90nm process.2009 9th International Symposium on Communications and Information Technology (ISCIT) : Icheon, South Korea, 2009.09.28-2009.09.3

    Polyphase filter with parametric tuning

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme

    Application of multirate digital signal processing to image compression

    Full text link
    With the increasing emphasis on digital communication and digital processing of images and video, image compression is drawing considerable interest as a means of reducing computer storage and communication channels bandwidth requirements. This thesis presents a method for the compression of grayscale images which is based on the multirate digital signal processing system. The input image spectrum is decomposed into octave wide subbands by critically resampling and filtering the image using separable FIR digital filters. These filters are chosen to satisfy the perfect reconstruction requirement. Simulation results on rectangularly sampled images (including a text image) are presented. Then, the algorithm is applied to the hexagonally resampled images and the results show a slight increase in the compression efficiency. Comparing the results against the standard (JPEG), indicate that this method does not have the blocking effect of JPEG and it preserves the edges even in the presence of high noise level

    Software Defined Radio Solutions for Wireless Communications Systems

    Get PDF
    Wireless technologies have been advancing rapidly, especially in the recent years. Design, implementation, and manufacturing of devices supporting the continuously evolving technologies require great efforts. Thus, building platforms compatible with different generations of standards and technologies has gained a lot of interest. As a result, software defined radios (SDRs) are investigated to offer more flexibility and scalability, and reduce the design efforts, compared to the conventional fixed-function hardware-based solutions.This thesis mainly addresses the challenges related to SDR-based implementation of today’s wireless devices. One of the main targets of most of the wireless standards has been to improve the achievable data rates, which imposes strict requirements on the processing platforms. Realizing real-time processing of high throughput signal processing algorithms using SDR-based platforms while maintaining energy consumption close to conventional approaches is a challenging topic that is addressed in this thesis.Firstly, this thesis concentrates on the challenges of a real-time software-based implementation for the very high throughput (VHT) Institute of Electrical and Electronics Engineers (IEEE) 802.11ac amendment from the wireless local area networks (WLAN) family, where an SDR-based solution is introduced for the frequency-domain baseband processing of a multiple-input multipleoutput (MIMO) transmitter and receiver. The feasibility of the implementation is evaluated with respect to the number of clock cycles and the consumed power. Furthermore, a digital front-end (DFE) concept is developed for the IEEE 802.11ac receiver, where the 80 MHz waveform is divided to two 40 MHz signals. This is carried out through time-domain digital filtering and decimation, which is challenging due to the latency and cyclic prefix (CP) budget of the receiver. Different multi-rate channelization architectures are developed, and the software implementation is presented and evaluated in terms of execution time, number of clock cycles, power, and energy consumption on different multi-core platforms.Secondly, this thesis addresses selected advanced techniques developed to realize inband fullduplex (IBFD) systems, which aim at improving spectral efficiency in today’s congested radio spectrum. IBFD refers to concurrent transmission and reception on the same frequency band, where the main challenge to combat is the strong self-interference (SI). In this thesis, an SDRbased solution is introduced, which is capable of real-time mitigation of the SI signal. The implementation results show possibility of achieving real-time sufficient SI suppression under time-varying environments using low-power, mobile-scale multi-core processing platforms. To investigate the challenges associated with SDR implementations for mobile-scale devices with limited processing and power resources, processing platforms suitable for hand-held devices are selected in this thesis work. On the baseband processing side, a very long instruction word (VLIW) processor, optimized for wireless communication applications, is utilized. Furthermore, in the solutions presented for the DFE processing and the digital SI canceller, commercial off-the-shelf (COTS) multi-core central processing units (CPUs) and graphics processing units (GPUs) are used with the aim of investigating the performance enhancement achieved by utilizing parallel processing.Overall, this thesis provides solutions to the challenges of low-power, and real-time software-based implementation of computationally intensive signal processing algorithms for the current and future communications systems

    Design, analysis and evaluation of sigma-delta based beamformers for medical ultrasound imaging applications

    Get PDF
    The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort

    Bluetooth/WLAN receiver design methodology and IC implementations

    Get PDF
    Emerging technologies such as Bluetooth and 802.11b (Wi-Fi) have fuelled the growth of the short-range communication industry. Bluetooth, the leading WPAN (wireless personal area network) technology, was designed primarily for cable replacement applications. The first generation Bluetooth products are focused on providing low-cost radio connections among personal electronic devices. In the WLAN (wireless local area network) arena, Wi-Fi appears to be the superior product. Wi-Fi is designed for high speed internet access, with higher radio power and longer distances. Both technologies use the same 2.4GHz ISM band. The differences between Bluetooth and Wi-Fi standard features lead to a natural partitioning of applications. Nowadays, many electronics devices such as laptops and PDAs, support both Bluetooth and Wi-Fi standards to cover a wider range of applications. The cost of supporting both standards, however, is a major concern. Therefore, a dual-mode transceiver is essential to keep the size and cost of such system transceivers at a minimum. A fully integrated low-IF Bluetooth receiver is designed and implemented in a low cost, main stream 0.35um CMOS technology. The system includes the RF front end, frequency synthesizer and baseband blocks. It has -82dBm sensitivity and draws 65mA current. This project involved 6 Ph.D. students and I was in charge of the design of the channel selection complex filter is designed. In the Bluetooth transmitter, a frequency modulator with fine frequency steps is needed to generate the GFSK signal that has +/-160kHz frequency deviation. A low power ROM-less direct digital frequency synthesizer (DDFS) is designed to implement the frequency modulation. The DDFS can be used for any frequency or phase modulation communication systems that require fast frequency switching with fine frequency steps. Another contribution is the implementation of a dual-mode 802.11b/Bluetooth receiver in IBM 0.25um BiCMOS process. Direct-conversion architecture was used for both standards to achieve maximum level of integration and block sharing. I was honored to lead the efforts of 7 Ph.D. students in this project. I was responsible for system level design as well as the design of the variable gain amplifier. The receiver chip consumes 45.6/41.3mA and the sensitivity is -86/-91dBm

    Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing

    Get PDF
    There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC). This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up. This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band. Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed
    corecore