6 research outputs found

    Contribution of Probabilistic Grammar Inference with K-Testable Language for Knowledge Modeling: Application on aging people

    No full text
    International audienceWe investigate the contribution of unsupervised learning and regular grammatical inference to respectively identify profiles of elderly people and their development over time in order to evaluate care needs (human, financial and physical resources). The proposed approach is based on k-Testable Languages in the Strict Sense Inference algorithm in order to infer a probabilistic automaton from which a Markovian model which has a discrete (finite or countable) state-space has been deduced. In simulating the corresponding Markov chain model, it is possible to obtain information on population ageing. We have verified if our observed system conforms to a unique long term state vector, called the stationary distribution and the steady-state

    Foundations of Security Analysis and Design III, FOSAD 2004/2005- Tutorial Lectures

    Get PDF
    he increasing relevance of security to real-life applications, such as electronic commerce and Internet banking, is attested by the fast-growing number of research groups, events, conferences, and summer schools that address the study of foundations for the analysis and the design of security aspects. This book presents thoroughly revised versions of eight tutorial lectures given by leading researchers during two International Schools on Foundations of Security Analysis and Design, FOSAD 2004/2005, held in Bertinoro, Italy, in September 2004 and September 2005. The lectures are devoted to: Justifying a Dolev-Yao Model under Active Attacks, Model-based Security Engineering with UML, Physical Security and Side-Channel Attacks, Static Analysis of Authentication, Formal Methods for Smartcard Security, Privacy-Preserving Database Systems, Intrusion Detection, Security and Trust Requirements Engineering

    Queensland University of Technology: Handbook 1991

    Get PDF
    The Queensland University of Technology handbook gives an outline of the faculties and subject offerings available that were offered by QUT

    Aeroelasticidad de una aeronave en presencia de nolinealidades estructurales concentradas

    Get PDF
    Resumen La aeroelasticidad es la disciplina de la ingenier铆a aeron谩utica que estudia la respuesta de veh铆culos flexibles sometidos a acciones externas aerodin谩micas y, en el caso de aeronaves, requiere el acoplamiento de fuerzas inerciales, estructurales, aerodin谩micas y de leyes de control (aeroservoelasticidad). La aproximaci贸n cl谩sica considera modelos lineales, algo que puede no ser cierto en determinadas condiciones: nolinealidades estructurales por holgura o fricci贸n en la rotaci贸n de las superficies de control, movimiento del combustible en los dep贸sitos (fuel sloshing) en maniobras con elevados factores de carga de aviones de altas prestaciones, desprendimiento de corriente, flujo trans贸nico o leyes de vuelo no lineales que dependen de la condici贸n de vuelo o de la maniobra. Las nolinealidades provocan inestabilidades aeroel谩sticas que no predicen los modelos lineales, como oscilaciones de ciclo limite o respuesta ca贸tica, y que tienen influencia en la vida en fatiga de los materiales o en las cualidades de vuelo de la aeronave. Esta tesis desarrolla una metodolog铆a novedosa para el estudio en la etapa de dise帽o de una aeronave del efecto aeroel谩stico de nolinealidades estructurales concentradas. La metodolog铆a es aplicada a una configuraci贸n cuerpo/ala esbelta tipo misil. En una primera parte, se realiza una revisi贸n bibliogr谩fica de la literatura sobre el efecto de nolinealidades estructurales en la aeroelasticidad de aeronaves, incluyendo una revisi贸n de las normas de certificaci贸n civiles y militares respecto a este tema. Se discute el estado del arte y las principales ventajas e inconvenientes de los distintos m茅todos de c谩lculo. En una segunda parte, se estudia el efecto de nolinealidades estructurales concentradas en la aeroelasticidad de configuraciones flexibles cuerpo/ala esbeltas, t铆picamente misiles, aunque la formulaci贸n es aplicable a otras configuraciones como pods subalares o tanques de combustible exteriores. Las nolinealidades estructurales, del tipo freeplay o hysteresis, se localizan en la uni贸n misil-avi贸n y en la rotaci贸n de las aletas del misil. El modelo estructural es un modelo flexible tipo viga para el cuerpo del misil y aletas r铆gidas, el modelo inercial se basa en una masa distribuida por unidad de longitud y el modelo aerodin谩mico est谩 basado en la teor铆a aerodin谩mica no estacionaria de Cuerpos Esbeltos. Se plantean las ecuaciones aeroel谩sticas del sistema en la formulaci贸n Estado-Espacio y se desarrolla un c贸digo Fortran 90/Matlab que las resuelve, incluyendo m茅todos de integraci贸n espec铆ficos para este tipo de sistemas nolineales y herramientas de postproceso e identificaci贸n de la respuesta. Este c贸digo se denomina FHSWB, acr贸nimo de Freeplay Hysteresis on Slender Wing/Body Configurations, e incluye las siguientes m贸dulos: m贸dulo de planteamiento de ecuaciones aeroel谩sticas en el Estado-Espacio, m贸dulo de integraci贸n en el dominio del tiempo (con m茅todo Illinois para determinar condiciones de cambio), m贸dulo de identificaci贸n en tiempo real de la respuesta, m贸dulos de postproceso y an谩lisis de se帽ales (an谩lisis de Fourier, planos de fase, diagramas de bifurcaci贸n), y m贸dulos para caracterizaci贸n de respuestas de ca贸tico (mapas de Poincar茅, Tasa de Dispersi贸n o DIRA). El c贸digo FHSWB es autocontenido para el dise帽o aeroel谩stico lineal/nolineal preliminar de configuraciones esbeltas, y ha sido validado con resultados te贸ricos y experimentales de otros autores. Por otro lado, los m贸dulos de integraci贸n, identificaci贸n, postproceso, an谩lisis y de caracterizaci贸n de caos pueden integrarse en el dise帽o de configuraciones m谩s complejas tipo aeronaves. El 煤nico requisito es recibir en formato Estado-Espacio las ecuaciones aeroel谩sticas del sistema. Se comprueba que la presencia de nolinealidades estructurales induce respuestas de tipo arm贸nico no amortiguado (LCO o Limit Cycle Oscillations) y ca贸ticas por debajo de la velocidad de flutter, lo que afecta de modo fundamental a las predicciones de fatiga. En resumen, los principales resultados de esta Tesis son: 1. Resumen del Estado del Arte en el tratamiento te贸rico y experimental de las nolinealidades estructurales desde el punto de vista aeroel谩stico. 2. Revisi贸n de las Normas de Certificaci贸n (civiles y militares) con respecto al tratamiento de las nonlinealidades estructurales. 3. Desarrollo te贸rico de una formulaci贸n Estado-Espacio de las ecuaciones aeroel谩sticas de una configuraci贸n cuerpo/ala esbelta. 4. Desarrollo de un c贸digo autocontenido (FHSWB) para el dise帽o aeroel谩stico preliminar de una configuraci贸n cuerpo/ala esbelta, incluyendo el c谩lculo de los coeficientes aerodin谩micos, c谩lculo de la aeroelasticidad lineal (divergencia y flutter) y an谩lisis de la aeroelasticidad en presencia de nolinealidades estructurales concentradas del tipo freeplay o hysteresis. 5. Desarrollo de herramientas para la integraci贸n en el tiempo, postproceso y an谩lisis de la respuesta de sistemas aeroel谩sticos nolineales, aplicable a todo tipo de configuraciones, con la 煤nica condici贸n de conocer sus ecuaciones aeroel谩sticas en la formulaci贸n Estado-Espacio. Estas herramientas son: a) M贸dulo que incorpora un integrador espec铆fico para nolinealidades tipo freeplay o hysteresis. En estas nolinealidades es fundamental determinar el tiempo de paso por las esquinas de las zonas muertas o deadband, que es donde el sistema cambia de ecuaciones aeroel谩sticas. b) M贸dulos para caracterizaci贸n en tiempo real de la respuesta. Una caracterizaci贸n pronta de la respuesta, es decir, determinar si se tiene una respuesta amortiguada, LCO, caos o flutter, ayuda a reducir los tiempos de c谩lculo, algo fundamental en el dise帽o de cualquier aeronave que requiere decenas de configuraciones combinadas con cientos de puntos de vuelo. c) M贸dulos para postproceso y an谩lisis de la respuesta de sistemas aeroel谩sticos: transformadas de Fourier, planos de fase, diagramas de bifurcaci贸n, etc. d) M贸dulos que incorporan diversas metodolog铆as para caracterizaci贸n de la caoticidad de la respuesta (diagramas de bifurcaci贸n, mapas de Poincar茅, etc.), definiendo un par谩metro (DIRA) que cuantifica el grado de caoticidad de los mapas de Poincar茅. Abstract Aeroelasticity is the discipline of the aeronautical engineering that studies the vibration of flying flexible structures as affected by the surrounding air. The aeroelastic behaviour of an aircraft depends basically of four major inputs: structure, inertia, aerodynamics, and flight control systems (aeroservoelasticity). The classical approach considers linear models, hipothesis that must be reviewed under certain circumstances: inherent structural nonlinearities like freeplay or hysteresis on the control surfaces, motion of the fuel into the tanks (fuel sloshing) on manouvers with high load factors in high performance fighters, flow detachment, transonic dip, or nonlinear electronic flight control laws. Nonlinearities modify the classical aeroelastic behaviour of the structure by introducing vibration-type instabilities like Limit Cycle Oscillations (LCOs) or chaotic response. These undamped vibrations, although not catastrophic, have important influence on the fatigue life of the structure or flying qualities of the aircraft. This thesis develops a novel simulation methodology for analysing the aeroelastic effect of concentrated structural nonlinearities at the design stage of the aircraft. The methodology is applied to a slender wing/body configuration. The first part of the thesis is devoted to review the state of art on the analysis of structural nonlinearities from the aeroelastic standpoint. Both technical publications and civil/military airworthiness regulations are reviewed, discussing the current methodologies and analyzing advantages and disadvantages of each one. The second part of the thesis studies the effect of concentrated structural nonlinearities (freeplay and hysteresis) on the aeroelastic characteristics of slender wing/body configurations, typically missiles, although it can also be applied to underwing pods or fuel tanks. These nonlinearities are located at the missile-to-pylon fittings in case the missile is hanged on an aircraft, or at the control surfaces rotation due to freeplay/hysteresis of the actuators or even wear of the hinge bearings. The structural model is a beam-like flexible finite element model for the missile body while control surfaces are assumed to behave as rigid plates. The inertia is based on a mass per unit length distributed along the longitudinal axis of the missile, and the aerodynamics is calculated with the unsteady slender body theory. The aeroelastic equations are formulated into the state-space form and are integrated with a Fortran 90 code developed ad hoc for the thesis. The code includes specific integration methods for freeplay and hysteresis nonlinearities, and Matlab postprocessing tools for characterizing the response. The Fortran 90/Matlab code is called FHSWB, which stands for Freeplay Hysteresis on Slender Wing Body Configurations, and includes the following modules: module that formulates the aeroelastic equations of slender wing/body configurations into the state-space form, time-domain integration module with Illinois method for capturing the corners of the nonlinearities, module for real-time identification of the response, module for postprocessing and signal analysis (Fourier transform, phase plane plots, bifurcation diagrams) and modules for chaos caracterization (Poincar麓e maps and Dispersal Rate). The FHSWB code is selfcontained for the preliminary design of slender wing/body configurations, and has been validated with theoretical and experimental results of various authors. On the other hand, the other modules (integration, identification, postprocessing, analysis and chaos characterization) can be easily integrated into the design of more complex configurations. The unique requirement is to know the aeroelastic equations in the state-space form. The results of the thesis confirm the presence of undamped LCOs and chaotic response due to the structural nonlinearities, what can affect the fatigue life of the structure. As a summary, these are the main contributions and results of this thesis: 1. State of art of the theoretical and experimental methods for evaluating the effect of the structural nonlinearities on the aeroelastic behaviour of a vehicle. 2. Review of the civil/military airworthiness regulations concerning the aeroelastic effect of structural nonlinearities. 3. Theoretical formulation of the aeroelastic equations for slender wing/body configurations including concentrated structural nonlinearities. 4. A Fortran 90/Matlab code FHSWB has been developed that is self-contained for the preliminary design of slender wing/body configurations from the aeroelastic standpoint. This code includes the calculations of the unsteady aerodynamic coefficients, linear aeroelasticity (divergence, flutter, and command reversal) and analysis of the response in the presence of freeplay-or hysteretic-type nonlinearities. 5. The code FHSWB includes different modules that can be easily used for analysing the response of other complex systems, as complete aircrafts: a) Time-domain integrator of the state-space equations, including specific features for treating freeplay and hysteresis nonlinearities. b) Module for real time characterization of the system response. c) Module for postprocessing the system response: Fourier transforms, phase plane plots, and bifurcation diagrams. These tools allow to charaterize the main important characteristics of the reponse: amplitude, characteristic frequencies, type of response, evolution with the flight speed, and so on. d) Specific modules for chaos characterization and cuantification in case of chaotic behaviour: Poincar麓e maps and a magnitude that is introduced into this tesis, the so-called Dispersal Rate DIRA, a parameter that quantifies the chaos intensity
    corecore