2,198 research outputs found

    Decision Problems for Nash Equilibria in Stochastic Games

    Get PDF
    We analyse the computational complexity of finding Nash equilibria in stochastic multiplayer games with Ļ‰\omega-regular objectives. While the existence of an equilibrium whose payoff falls into a certain interval may be undecidable, we single out several decidable restrictions of the problem. First, restricting the search space to stationary, or pure stationary, equilibria results in problems that are typically contained in PSPACE and NP, respectively. Second, we show that the existence of an equilibrium with a binary payoff (i.e. an equilibrium where each player either wins or loses with probability 1) is decidable. We also establish that the existence of a Nash equilibrium with a certain binary payoff entails the existence of an equilibrium with the same payoff in pure, finite-state strategies.Comment: 22 pages, revised versio

    A Lyapunov Optimization Approach to Repeated Stochastic Games

    Full text link
    This paper considers a time-varying game with NN players. Every time slot, players observe their own random events and then take a control action. The events and control actions affect the individual utilities earned by each player. The goal is to maximize a concave function of time average utilities subject to equilibrium constraints. Specifically, participating players are provided access to a common source of randomness from which they can optimally correlate their decisions. The equilibrium constraints incentivize participation by ensuring that players cannot earn more utility if they choose not to participate. This form of equilibrium is similar to the notions of Nash equilibrium and correlated equilibrium, but is simpler to attain. A Lyapunov method is developed that solves the problem in an online \emph{max-weight} fashion by selecting actions based on a set of time-varying weights. The algorithm does not require knowledge of the event probabilities and has polynomial convergence time. A similar method can be used to compute a standard correlated equilibrium, albeit with increased complexity.Comment: 13 pages, this version fixes an incorrect statement of the previous arxiv version (see footnote 1, page 5 in current version for the correction

    BL-WoLF: A Framework For Loss-Bounded Learnability In Zero-Sum Games

    Get PDF
    We present BL-WoLF, a framework for learnability in repeated zero-sum games where the cost of learning is measured by the losses the learning agent accrues (rather than the number of rounds). The game is adversarially chosen from some family that the learner knows. The opponent knows the game and the learner's learning strategy. The learner tries to either not accrue losses, or to quickly learn about the game so as to avoid future losses (this is consistent with the Win or Learn Fast (WoLF) principle; BL stands for ``bounded loss''). Our framework allows for both probabilistic and approximate learning. The resultant notion of {\em BL-WoLF}-learnability can be applied to any class of games, and allows us to measure the inherent disadvantage to a player that does not know which game in the class it is in. We present {\em guaranteed BL-WoLF-learnability} results for families of games with deterministic payoffs and families of games with stochastic payoffs. We demonstrate that these families are {\em guaranteed approximately BL-WoLF-learnable} with lower cost. We then demonstrate families of games (both stochastic and deterministic) that are not guaranteed BL-WoLF-learnable. We show that those families, nevertheless, are {\em BL-WoLF-learnable}. To prove these results, we use a key lemma which we derive
    • ā€¦
    corecore