520 research outputs found

    Exact Decoding for Phrase-Based Statistical Machine Translation

    Full text link

    Exact decoding for phrase-based statistical machine translation

    Get PDF
    © 2014 Association for Computational Linguistics. The combinatorial space of translation derivations in phrase-based statistical machine translation is given by the intersection between a translation lattice and a target language model. We replace this intractable intersection by a tractable relaxation which incorporates a low-order upperbound on the language model. Exact optimisation is achieved through a coarseto- fine strategy with connections to adaptive rejection sampling. We perform exact optimisation with unpruned language models of order 3 to 5 and show searcherror curves for beam search and cube pruning on standard test sets. This is the first work to tractably tackle exact optimisation with language models of orders higher than 3

    Exact Decoding for Phrase-Based Statistical Machine Translation

    Get PDF
    Abstract The combinatorial space of translation derivations in phrase-based statistical machine translation is given by the intersection between a translation lattice and a target language model. We replace this intractable intersection by a tractable relaxation which incorporates a low-order upperbound on the language model. Exact optimisation is achieved through a coarseto-fine strategy with connections to adaptive rejection sampling. We perform exact optimisation with unpruned language models of order 3 to 5 and show searcherror curves for beam search and cube pruning on standard test sets. This is the first work to tractably tackle exact optimisation with language models of orders higher than 3

    Probabilistic Inference for Phrase-based Machine Translation: A Sampling Approach

    Get PDF
    Recent advances in statistical machine translation (SMT) have used dynamic programming (DP) based beam search methods for approximate inference within probabilistic translation models. Despite their success, these methods compromise the probabilistic interpretation of the underlying model thus limiting the application of probabilistically defined decision rules during training and decoding. As an alternative, in this thesis, we propose a novel Monte Carlo sampling approach for theoretically sound approximate probabilistic inference within these models. The distribution we are interested in is the conditional distribution of a log-linear translation model; however, often, there is no tractable way of computing the normalisation term of the model. Instead, a Gibbs sampling approach for phrase-based machine translation models is developed which obviates the need of computing this term yet produces samples from the required distribution. We establish that the sampler effectively explores the distribution defined by a phrase-based models by showing that it converges in a reasonable amount of time to the desired distribution, irrespective of initialisation. Empirical evidence is provided to confirm that the sampler can provide accurate estimates of expectations of functions of interest. The mix of high probability and low probability derivations obtained through sampling is shown to provide a more accurate estimate of expectations than merely using the n-most highly probable derivations. Subsequently, we show that the sampler provides a tractable solution for finding the maximum probability translation in the model. We also present a unified approach to approximating two additional intractable problems: minimum risk training and minimum Bayes risk decoding. Key to our approach is the use of the sampler which allows us to explore the entire probability distribution and maintain a strict probabilistic formulation through the translation pipeline. For these tasks, sampling allies the simplicity of n-best list approaches with the extended view of the distribution that lattice-based approaches benefit from, while avoiding the biases associated with beam search. Our approach is theoretically well-motivated and can give better and more stable results than current state of the art methods

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Phrase table pruning for Statistical Machine Translation

    Get PDF
    Phrase-Based Statistical Machine Translation systems model the translation process using pairs of corresponding sequences of words extracted from parallel corpora. These biphrases are stored in phrase tables that typically contain several millions such entries, making it di cult to assess their quality without going to the end of the translation process. Our work is based on the examplifying study of phrase tables generated from the Europarl data, from French to English. We give some statistical information about the biphrases contained in the phrase table, evaluate the coverage of previously unseen sentences and analyse the e ects of pruning on the translation

    Syntax-based machine translation using dependency grammars and discriminative machine learning

    Get PDF
    Machine translation underwent huge improvements since the groundbreaking introduction of statistical methods in the early 2000s, going from very domain-specific systems that still performed relatively poorly despite the painstakingly crafting of thousands of ad-hoc rules, to general-purpose systems automatically trained on large collections of bilingual texts which manage to deliver understandable translations that convey the general meaning of the original input. These approaches however still perform quite below the level of human translators, typically failing to convey detailed meaning and register, and producing translations that, while readable, are often ungrammatical and unidiomatic. This quality gap, which is considerably large compared to most other natural language processing tasks, has been the focus of the research in recent years, with the development of increasingly sophisticated models that attempt to exploit the syntactical structure of human languages, leveraging the technology of statistical parsers, as well as advanced machine learning methods such as marging-based structured prediction algorithms and neural networks. The translation software itself became more complex in order to accommodate for the sophistication of these advanced models: the main translation engine (the decoder) is now often combined with a pre-processor which reorders the words of the source sentences to a target language word order, or with a post-processor that ranks and selects a translation according according to fine model from a list of candidate translations generated by a coarse model. In this thesis we investigate the statistical machine translation problem from various angles, focusing on translation from non-analytic languages whose syntax is best described by fluid non-projective dependency grammars rather than the relatively strict phrase-structure grammars or projectivedependency grammars which are most commonly used in the literature. We propose a framework for modeling word reordering phenomena between language pairs as transitions on non-projective source dependency parse graphs. We quantitatively characterize reordering phenomena for the German-to-English language pair as captured by this framework, specifically investigating the incidence and effects of the non-projectivity of source syntax and the non-locality of word movement w.r.t. the graph structure. We evaluated several variants of hand-coded pre-ordering rules in order to assess the impact of these phenomena on translation quality. We propose a class of dependency-based source pre-ordering approaches that reorder sentences based on a flexible models trained by SVMs and and several recurrent neural network architectures. We also propose a class of translation reranking models, both syntax-free and source dependency-based, which make use of a type of neural networks known as graph echo state networks which is highly flexible and requires extremely little training resources, overcoming one of the main limitations of neural network models for natural language processing tasks
    • …
    corecore