2,662 research outputs found

    An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortization on Connectivity Structure

    Full text link
    The paper presents an O^*(1.2312^n)-time and polynomial-space algorithm for the traveling salesman problem in an n-vertex graph with maximum degree 3. This improves the previous time bounds of O^*(1.251^n) by Iwama and Nakashima and O^*(1.260^n) by Eppstein. Our algorithm is a simple branch-and-search algorithm. The only branch rule is designed on a cut-circuit structure of a graph induced by unprocessed edges. To improve a time bound by a simple analysis on measure and conquer, we introduce an amortization scheme over the cut-circuit structure by defining the measure of an instance to be the sum of not only weights of vertices but also weights of connected components of the induced graph.Comment: 24 pages and 4 figure

    Determinant Sums for Undirected Hamiltonicity

    Full text link
    We present a Monte Carlo algorithm for Hamiltonicity detection in an nn-vertex undirected graph running in O∗(1.657n)O^*(1.657^{n}) time. To the best of our knowledge, this is the first superpolynomial improvement on the worst case runtime for the problem since the O∗(2n)O^*(2^n) bound established for TSP almost fifty years ago (Bellman 1962, Held and Karp 1962). It answers in part the first open problem in Woeginger's 2003 survey on exact algorithms for NP-hard problems. For bipartite graphs, we improve the bound to O∗(1.414n)O^*(1.414^{n}) time. Both the bipartite and the general algorithm can be implemented to use space polynomial in nn. We combine several recently resurrected ideas to get the results. Our main technical contribution is a new reduction inspired by the algebraic sieving method for kk-Path (Koutis ICALP 2008, Williams IPL 2009). We introduce the Labeled Cycle Cover Sum in which we are set to count weighted arc labeled cycle covers over a finite field of characteristic two. We reduce Hamiltonicity to Labeled Cycle Cover Sum and apply the determinant summation technique for Exact Set Covers (Bj\"orklund STACS 2010) to evaluate it.Comment: To appear at IEEE FOCS 201

    Computational Complexity for Physicists

    Full text link
    These lecture notes are an informal introduction to the theory of computational complexity and its links to quantum computing and statistical mechanics.Comment: references updated, reprint available from http://itp.nat.uni-magdeburg.de/~mertens/papers/complexity.shtm

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source s∈Vs\in V to a destination t∈Vt\in V that includes all vertices specified by a set W⊆V\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable

    Applications of Bee Colony Optimization

    Get PDF
    Many computationally difficult problems are attacked using non-exact algorithms, such as approximation algorithms and heuristics. This thesis investigates an ex- ample of the latter, Bee Colony Optimization, on both an established optimization problem in the form of the Quadratic Assignment Problem and the FireFighting problem, which has not been studied before as an optimization problem. Bee Colony Optimization is a swarm intelligence algorithm, a paradigm that has increased in popularity in recent years, and many of these algorithms are based on natural pro- cesses. We tested the Bee Colony Optimization algorithm on the QAPLIB library of Quadratic Assignment Problem instances, which have either optimal or best known solutions readily available, and enabled us to compare the quality of solutions found by the algorithm. In addition, we implemented a couple of other well known algorithms for the Quadratic Assignment Problem and consequently we could analyse the runtime of our algorithm. We introduce the Bee Colony Optimization algorithm for the FireFighting problem. We also implement some greedy algorithms and an Ant Colony Optimization al- gorithm for the FireFighting problem, and compare the results obtained on some randomly generated instances. We conclude that Bee Colony Optimization finds good solutions for the Quadratic Assignment Problem, however further investigation on speedup methods is needed to improve its performance to that of other algorithms. In addition, Bee Colony Optimization is effective on small instances of the FireFighting problem, however as instance size increases the results worsen in comparison to the greedy algorithms, and more work is needed to improve the decisions made on these instances

    Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the plane

    Full text link
    Given a set PP of nn points with their pairwise distances, the traveling salesman problem (TSP) asks for a shortest tour that visits each point exactly once. A TSP instance is rectilinear when the points lie in the plane and the distance considered between two points is the l1l_1 distance. In this paper, a fixed-parameter algorithm for the Rectilinear TSP is presented and relies on techniques for solving TSP on bounded-treewidth graphs. It proves that the problem can be solved in O(nh7h)O\left(nh7^h\right) where h≤nh \leq n denotes the number of horizontal lines containing the points of PP. The same technique can be directly applied to the problem of finding a shortest rectilinear Steiner tree that interconnects the points of PP providing a O(nh5h)O\left(nh5^h\right) time complexity. Both bounds improve over the best time bounds known for these problems.Comment: 24 pages, 13 figures, 6 table
    • …
    corecore