68 research outputs found

    The longest path problem is polynomial on interval graphs.

    Get PDF
    The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach

    The multicolored graph realization problem

    Get PDF
    We introduce the multicolored graph realization problem (MGR). The input to this problem is a colored graph (G, φ), i.e., a graph G together with a coloring φ on its vertices. We associate each colored graph (G, φ) with a cluster graph (Gφ ) in which, after collapsing all vertices with the same color to a node, we remove multiple edges and self-loops. A set of vertices S is multicolored when S has exactly one vertex from each color class. The MGR problem is to decide whether there is a multicolored set S so that, after identifying each vertex in S with its color class, G[S] coincides with Gφ . The MGR problem is related to the well-known class of generalized network problems, most of which are NP-hard, like the generalized Minimum Spanning Tree problem. The MGR is a generalization of the multicolored clique problem, which is known to be W [1]-hard when parameterized by the number of colors. Thus, MGR remains W [1]-hard, when parameterized by the size of the cluster graph. These results imply that the MGR problem is W [1]-hard when parameterized by any graph parameter on Gφ , among which lies treewidth. Consequently, we look at the instances of the problem in which both the number of color classes and the treewidth of Gφ are unbounded. We consider three natural such graph classes: chordal graphs, convex bipartite graphs and 2-dimensional grid graphs. We show that MGR is NP-complete when Gφ is either chordal, biconvex bipartite, complete bipartite or a 2-dimensional grid. Our reductions show that the problem remains hard even when the maximum number of vertices in a color class is 3. In the case of the grid, the hardness holds even for graphs with bounded degree. We provide a complexity dichotomy with respect to cluster size .J. Díaz and M. Serna are partially supported by funds from the Spanish Agencia Estatal de Investigación under grant PID2020-112581GB-C21 (MOTION), and from AGAUR under grant 2017-SGR-786 (ALBCOM). Ö. Y. Diner is partially supported by the Scientific and Technological Research Council Tübitak under project BIDEB 2219-1059B191802095 and by Kadir Has University under project 2018-BAP-08. O. Serra is supported by the Spanish Agencia Estatal de Investigación under grant PID2020-113082GB-I00.Peer ReviewedPostprint (published version

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC)University of Warwick. Centre for Discrete Mathematics and its Applications (DIMAP)GBUnited Kingdo

    Contributions on secretary problems, independent sets of rectangles and related problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 187-198).We study three problems arising from different areas of combinatorial optimization. We first study the matroid secretary problem, which is a generalization proposed by Babaioff, Immorlica and Kleinberg of the classical secretary problem. In this problem, the elements of a given matroid are revealed one by one. When an element is revealed, we learn information about its weight and decide to accept it or not, while keeping the accepted set independent in the matroid. The goal is to maximize the expected weight of our solution. We study different variants for this problem depending on how the elements are presented and on how the weights are assigned to the elements. Our main result is the first constant competitive algorithm for the random-assignment random-order model. In this model, a list of hidden nonnegative weights is randomly assigned to the elements of the matroid, which are later presented to us in uniform random order, independent of the assignment. The second problem studied is the jump number problem. Consider a linear extension L of a poset P. A jump is a pair of consecutive elements in L that are not comparable in P. Finding a linear extension minimizing the number of jumps is NP-hard even for chordal bipartite posets. For the class of posets having two directional orthogonal ray comparability graphs, we show that this problem is equivalent to finding a maximum independent set of a well-behaved family of rectangles. Using this, we devise combinatorial and LP-based algorithms for the jump number problem, extending the class of bipartite posets for which this problem is polynomially solvable and improving on the running time of existing algorithms for certain subclasses. The last problem studied is the one of finding nonempty minimizers of a symmetric submodular function over any family of sets closed under inclusion. We give an efficient O(ns)-time algorithm for this task, based on Queyranne's pendant pair technique for minimizing unconstrained symmetric submodular functions. We extend this algorithm to report all inclusion-wise nonempty minimal minimizers under hereditary constraints of slightly more general functions.by José Antonio Soto.Ph.D
    • …
    corecore