5,619 research outputs found

    Celebrating Cercignani's conjecture for the Boltzmann equation

    Full text link
    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani, powerful mind and great scientist, one of the founders of the modern theory of the Boltzmann equation. 24 pages. V2: correction of some typos and one ref. adde

    Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off

    Full text link
    This paper deals with the long time behavior of solutions to the spatially homogeneous Boltzmann equation. The interactions considered are the so-called (non cut-off and non mollified) hard potentials. We prove an exponential in time convergence towards the equilibrium, improving results of Villani from \cite{Vill1} where a polynomial decay to equilibrium is proven. The basis of the proof is the study of the linearized equation for which we prove a new spectral gap estimate in a L1L^1 space with a polynomial weight by taking advantage of the theory of enlargement of the functional space for the semigroup decay developed by Gualdani and al in \cite{GMM}. We then get our final result by combining this new spectral gap estimate with bilinear estimates on the collisional operator that we establish.Comment: 22 page

    Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials

    Full text link
    This paper deals with the long time behaviour of solutions to the spatially homogeneous Landau equation with hard potentials . We prove an exponential in time convergence towards the equilibrium with the optimal rate given by the spectral gap of the associated linearized operator. This result improves the polynomial in time convergence obtained by Desvillettes and Villani \cite{DesVi2}. Our approach is based on new decay estimates for the semigroup generated by the linearized Landau operator in weighted (polynomial or stretched exponential) LpL^p-spaces, using a method develloped by Gualdani, Mischler and Mouhot \cite{GMM}.Comment: 20 pages. Minor corrections, improvement on the presentatio

    A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization

    Full text link
    A deterministic method is proposed for solving the Boltzmann equation. The method employs a Galerkin discretization of the velocity space and adopts, as trial and test functions, the collocation basis functions based on weights and roots of a Gauss-Hermite quadrature. This is defined by means of half- and/or full-range Hermite polynomials depending whether or not the distribution function presents a discontinuity in the velocity space. The resulting semi-discrete Boltzmann equation is in the form of a system of hyperbolic partial differential equations whose solution can be obtained by standard numerical approaches. The spectral rate of convergence of the results in the velocity space is shown by solving the spatially uniform homogeneous relaxation to equilibrium of Maxwell molecules. As an application, the two-dimensional cavity flow of a gas composed by hard-sphere molecules is studied for different Knudsen and Mach numbers. Although computationally demanding, the proposed method turns out to be an effective tool for studying low-speed slightly rarefied gas flows
    • …
    corecore