75,737 research outputs found

    Parameterized Complexity of Critical Node Cuts

    Get PDF
    We consider the following natural graph cut problem called Critical Node Cut (CNC): Given a graph GG on nn vertices, and two positive integers kk and xx, determine whether GG has a set of kk vertices whose removal leaves GG with at most xx connected pairs of vertices. We analyze this problem in the framework of parameterized complexity. That is, we are interested in whether or not this problem is solvable in f(κ)nO(1)f(\kappa) \cdot n^{O(1)} time (i.e., whether or not it is fixed-parameter tractable), for various natural parameters κ\kappa. We consider four such parameters: - The size kk of the required cut. - The upper bound xx on the number of remaining connected pairs. - The lower bound yy on the number of connected pairs to be removed. - The treewidth ww of GG. We determine whether or not CNC is fixed-parameter tractable for each of these parameters. We determine this also for all possible aggregations of these four parameters, apart from w+kw+k. Moreover, we also determine whether or not CNC admits a polynomial kernel for all these parameterizations. That is, whether or not there is an algorithm that reduces each instance of CNC in polynomial time to an equivalent instance of size κO(1)\kappa^{O(1)}, where κ\kappa is the given parameter

    Algorithms for Cut Problems on Trees

    Full text link
    We study the {\sc multicut on trees} and the {\sc generalized multiway Cut on trees} problems. For the {\sc multicut on trees} problem, we present a parameterized algorithm that runs in time O(ρk)O^{*}(\rho^k), where ρ=2+11.555\rho = \sqrt{\sqrt{2} + 1} \approx 1.555 is the positive root of the polynomial x42x21x^4-2x^2-1. This improves the current-best algorithm of Chen et al. that runs in time O(1.619k)O^{*}(1.619^k). For the {\sc generalized multiway cut on trees} problem, we show that this problem is solvable in polynomial time if the number of terminal sets is fixed; this answers an open question posed in a recent paper by Liu and Zhang. By reducing the {\sc generalized multiway cut on trees} problem to the {\sc multicut on trees} problem, our results give a parameterized algorithm that solves the {\sc generalized multiway cut on trees} problem in time O(ρk)O^{*}(\rho^k), where ρ=2+11.555\rho = \sqrt{\sqrt{2} + 1} \approx 1.555 time

    Counting and enumerating optimum cut sets for hypergraph kk-partitioning problems for fixed kk

    Get PDF
    We consider the problem of enumerating optimal solutions for two hypergraph kk-partitioning problems -- namely, Hypergraph-kk-Cut and Minmax-Hypergraph-kk-Partition. The input in hypergraph kk-partitioning problems is a hypergraph G=(V,E)G=(V, E) with positive hyperedge costs along with a fixed positive integer kk. The goal is to find a partition of VV into kk non-empty parts (V1,V2,,Vk)(V_1, V_2, \ldots, V_k) -- known as a kk-partition -- so as to minimize an objective of interest. 1. If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-kk-Partition. A subset of hyperedges is a minmax-kk-cut-set if it is the subset of hyperedges crossing an optimum kk-partition for Minmax-Hypergraph-kk-Partition. 2. If the objective of interest is the total cost of hyperedges crossing the kk-partition, then the problem is known as Hypergraph-kk-Cut. A subset of hyperedges is a min-kk-cut-set if it is the subset of hyperedges crossing an optimum kk-partition for Hypergraph-kk-Cut. We give the first polynomial bound on the number of minmax-kk-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed kk. Our technique is strong enough to also enable an nO(k)pn^{O(k)}p-time deterministic algorithm to enumerate all min-kk-cut-sets in hypergraphs, thus improving on the previously known nO(k2)pn^{O(k^2)}p-time deterministic algorithm, where nn is the number of vertices and pp is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-kk-Cut and Minmax-Hypergraph-kk-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs).Comment: Accepted to ICALP'22. arXiv admin note: text overlap with arXiv:2110.1481

    A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs

    Full text link
    We propose a fixed-parameter tractable algorithm for the \textsc{Max-Cut} problem on embedded 1-planar graphs parameterized by the crossing number kk of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most 3k3^k planar graphs, using edge removal and node contraction. The \textsc{Max-Cut} problem is then solved on the planar graphs using established polynomial-time algorithms. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithm computes a maximum cut in an embedded 1-planar graph with nn nodes and kk edge crossings in time O(3kn3/2logn)\mathcal{O}(3^k \cdot n^{3/2} \log n).Comment: conference version from IWOCA 201

    Approximating Minimum Cost Connectivity Orientation and Augmentation

    Get PDF
    We investigate problems addressing combined connectivity augmentation and orientations settings. We give a polynomial-time 6-approximation algorithm for finding a minimum cost subgraph of an undirected graph GG that admits an orientation covering a nonnegative crossing GG-supermodular demand function, as defined by Frank. An important example is (k,)(k,\ell)-edge-connectivity, a common generalization of global and rooted edge-connectivity. Our algorithm is based on a non-standard application of the iterative rounding method. We observe that the standard linear program with cut constraints is not amenable and use an alternative linear program with partition and co-partition constraints instead. The proof requires a new type of uncrossing technique on partitions and co-partitions. We also consider the problem setting when the cost of an edge can be different for the two possible orientations. The problem becomes substantially more difficult already for the simpler requirement of kk-edge-connectivity. Khanna, Naor, and Shepherd showed that the integrality gap of the natural linear program is at most 44 when k=1k=1 and conjectured that it is constant for all fixed kk. We disprove this conjecture by showing an Ω(V)\Omega(|V|) integrality gap even when k=2k=2

    On the Parameterized Complexity of Multiway Near-Separator

    Full text link
    We study a new graph separation problem called Multiway Near-Separator. Given an undirected graph GG, integer kk, and terminal set TV(G)T \subseteq V(G), it asks whether there is a vertex set SV(G)TS \subseteq V(G) \setminus T of size at most kk such that in graph GSG-S, no pair of distinct terminals can be connected by two pairwise internally vertex-disjoint paths. Hence each terminal pair can be separated in GSG-S by removing at most one vertex. The problem is therefore a generalization of (Node) Multiway Cut, which asks for a vertex set for which each terminal is in a different component of GSG-S. We develop a fixed-parameter tractable algorithm for Multiway Near-Separator running in time 2O(klogk)nO(1)2^{O(k \log k)} * n^{O(1)}. Our algorithm is based on a new pushing lemma for solutions with respect to important separators, along with two problem-specific ingredients. The first is a polynomial-time subroutine to reduce the number of terminals in the instance to a polynomial in the solution size kk plus the size of a given suboptimal solution. The second is a polynomial-time algorithm that, given a graph GG and terminal set TV(G)T \subseteq V(G) along with a single vertex xV(G)x \in V(G) that forms a multiway near-separator, computes a 14-approximation for the problem of finding a multiway near-separator not containing xx.Comment: Conference version to appear at the International Symposium on Parameterized and Exact Computation (IPEC 2023

    A polynomial time approximation algorithm for the two-commodity splittable flow problem

    Get PDF
    We consider a generalization of the unsplittable maximum two-commodity flow problem on undirected graphs where each commodity i{1,2}{i \in \{1, 2\}} can be split into a bounded number k i of equally-sized chunks that can be routed on different paths. We show that in contrast to the single-commodity case this problem is NP-hard, and hard to approximate to within a factor of α > 1/2. We present a polynomial time 1/2-approximation algorithm for the case of uniform chunk size over both commodities and show that for even k i and a mild cut condition it can be modified to yield an exact method. The uniform case can be used to derive a 1/4-approximation for the maximum concurrent (k 1, k 2)-splittable flow without chunk size restrictions for fixed demand ratio
    corecore