216 research outputs found

    Fabrication of Switches on Polymer-Based by Hot Embossing

    Get PDF
    In MEMS technology, most of the devices are fabricated on glass or silicon substrate. However, this research presents a novel manufacture method that is derived from conventional hot embossing technology to fabricate the electrostatic switches on polymer material. The procedures of fabrication involve the metal deposition, photolithography, electroplating, hot embossing and hot embed techniques. The fundamental concept of the hot embed technology is that the temperature should be increased above Tg of polymer, and the polymer becomes plastic and viscous and could be molded. According to the fundamental concept, the metal layer on the silicon/glass substrate could be embedded into polymer material during the hot embossing process. Afterward, the metal layer is bonded together with the polymer after removing the substrate in the de-embossing step. Finally, the electrostatic switch is fabricated on polymethylmethacrylate(PMMA) material to demonstrate the novel method.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Fabricating microfluidic devices in polymers for bioanalytica applications

    Get PDF
    The research presented in this document focuses on the fabrication, characterization and application of microfluidic systems fabricated in poly(methyl methacrylate) (PMMA) with the emphasis focused on the fabrication processing steps. Microfluidic devices were produced in PMMA using X-ray lithography. The fabrication methods investigated were sacrificial mask, polyimide membrane mask and embossing techniques. PMMA microfluidic devices fabricated using X-ray lithography were characterized using scanning electron microscopy (SEM) and optical microscopy, while analytical techniques such as electroosmotic flow determination, separations, and fluorescent microscopy were used to characterize fluid transport in these devices. A novel method for the heat annealing of PMMA to PMMA to create a closed system is described. Characterization of this technique was carried out by optical microscopy and scanning electron microscopy. The manufacturing techniques utilized in producing mold inserts for hot embossing and injection molding is discussed as well. Both the mold insert and devices produced from the inserts were characterized using scanning electron microscopy. Devices produced can be used to perform a number of analytical techniques including single molecule detection and fluorescence lifetime monitoring. The primary goal of this research was to develop molding tools consisting of high-aspect-ratio microstructures using robust and reproducible processing steps

    Snake‐Inspired, Nano‐Stepped Surface with Tunable Frictional Anisotropy Made from a Shape‐Memory Polymer for Unidirectional Transport of Microparticles

    Get PDF
    The ventral scales of many snake species are decorated with oriented micro‐fibril structures featuring nano‐steps to achieve anisotropic friction for efficient locomotion. Here, a nano‐stepped surface with tunable frictional anisotropy inspired by this natural structure is presented. It is fabricated by replicating the micro‐fibril structure of the ventral scales of the Chinese cobra (Naja atra) into a thermo‐responsive shape‐memory polymer via hot embossing. The resulting smart surface transfers from a flat topography to a predefined structure of nano‐steps upon heating. During this recovery process, the nano‐steps grow out of the surfaces resulting in a surface with frictional anisotropy, which is characterized in situ by an atomic force microscopy. The desired frictional anisotropy can be customized by stopping the heating process before full recovery. The nano‐stepped surface is employed for the unidirectional transport of microscale particles through small random vibrations. Due to the frictional anisotropy, the microspheres drift unidirectionally (down the nano‐steps). Finally, dry self‐cleaning is demonstrated by the transportation of a pile of microparticles

    Nanoimprint Lithography

    Get PDF

    Multiphase flows in polymer microfluidic systems

    Get PDF
    Continuous delivery of segmented reagents using pressure-driven multiphase flow in microchannels is a promising technology for high throughput microfluidic bioassays. Separation and encapsulation of the target reagents with another inert fluid provide many advantages over single phase flow in microfluidic applications of biotechnology. In order to achieve these advantages and control these multiphase flows, it is necessary to understand their generation and transport characteristics as influenced by geometrical miniaturization, channel wall properties, the effects of surfactants and operating conditions. For gas-liquid two-phase flow, dry air and deionized water were driven into hot embossed PMMA microchannels with 200 μm square test microchannels. Flow regimes, flow maps and the lengths of the gas bubbles and liquid plugs in terms of the liquid volumetric flow ratio (βL) were determined. Continuous generation of regular segmented flow was also discussed. Three sub-regimes of the Segmented flow were identified based on the statistical phase length scales observed over a substantial test channel length. For the liquid-liquid segmented flow, deionized water and perfluorocarbon with a surfactant were used as test fluids in the hot embossed polycarbonate microchannels. The effects of three expansion ratios from the injection to the test channels of 2, 4, and 16 were investigated comparing the flow regimes, transitions and maps in terms of a fixed carrier fluid volumetric flow ratio. The length of the dispersed fluids and the distance between consecutive droplets or plugs in terms of the carrier fluid volumetric flow ratio (βC) were determined. Velocities of the dispersed droplets and plugs were measured using double-pulsed laser illumination and were found to be 1.46 ± 0.08 and 1.25 ± 0.05 times faster than the superficial velocity of the segmented flow, respectively. The multiphase flow pressure drops were measured for all of the flow regimes in gas-liquid two-phase and liquid-liquid segmented flows. Each flow regime identified on the basis of topological observations, including the length scale of each fluid phase and the number of the gas bubbles or dispersed droplets in unit length with respect to the volumetric flow ratio, was associated with different trends in the pressure drop variation

    A Customer Programmable Microfluidic System

    Get PDF
    Microfluidics is both a science and a technology offering great and perhaps even revolutionary capabilities to impact the society in the future. However, due to the scaling effects there are unknown phenomena and technology barriers about fluidics in microchannel, material properties in microscale and interactions with fluids are still missing. A systematic investigation has been performed aiming to develop A Customer Programmable Microfluidic System . This innovative Polydimethylsiloxane (PDMS)-based microfluidic system provides a bio-compatible platform for bio-analysis systems such as Lab-on-a-chip, micro-total-analysis system and biosensors as well as the applications such as micromirrors. The system consists of an array of microfluidic devices and each device containing a multilayer microvalve. The microvalve uses a thermal pneumatic actuation method to switch and/or control the fluid flow in the integrated microchannels. It provides a means to isolate samples of interest and channel them from one location of the system to another based on needs of realizing the customers\u27 desired functions. Along with the fluid flow control properties, the system was developed and tested as an array of micromirrors. An aluminum layer is embedded into the PDMS membrane. The metal was patterned as a network to increase the reflectivity of the membrane, which inherits the deformation of the membrane as a mirror. The deformable mirror is a key element in the adaptive optics. The proposed system utilizes the extraordinary flexibility of PDMS and the addressable control to manipulate the phase of a propagating optical wave front, which in turn can increase the performance of the adaptive optics. Polydimethylsiloxane (PDMS) has been widely used in microfabrication for microfluidic systems. However, few attentions were paid in the past to mechanical properties of PDMS. Importantly there is no report on influences of microfabrication processes which normally involve chemical reactors and biologically reaction processes. A comprehensive study was made in this work to study fundamental issues such as scaling law effects on PDMS properties, chemical emersion and temperature effects on mechanical properties of PDMS, PDMS compositions and resultant properties, as well as bonding strength, etc. Results achieved from this work will provide foundation of future developments of microfluidics utilizing PDMS

    Injection molded self-cleaning surfaces

    Get PDF

    A lateral comb drive on PMMA by hot embossing technique

    Get PDF
    The objective of this work is to fabricate a laterally driven comb drive on low-cost poly-methyl-meth-acrylate (PMMA) by hot embossing technology. An electrostatic comb drive is one of the most important components in Micro-Electro-Mechanical Systems (MEMS). A comb drive can work as both a sensor and an actuator. Varieties of comb drives have been developed on silicon and poly-silicon materials. Hot embossing of polymers is a promising alternative to traditional silicon processes due to cost-reduction. It fulfills the demand for low-cost methods for high volume production of micro-components and micro-systems. The raw materials of polymer are relatively inexpensive. For the manufacturing, a complex micromachining step for the fabrication of mold insert is only necessary once. The desired microstructures can be batch-replicated using the master mold. In this work we used Finite Element Analysis software to design the structures. Several new process methods have been developed for achieving micro-mechanical structures with high aspect ratio on PMMA by hot embossing technique, forming mold insert by bonding a silicon-wafer mold onto a stainless steel disk, and releasing movable structures on PMMA material. The comb drive microstructure, consisting of 80 units of interdigitated parallel capacitors with the finger gap and width of both 10 μm, has been fabricated successfully under a typical condition of molding force of 35000 N at 135°C. The minimum feature size is 5 μm and the thickness of the structure is 60 μm, which makes the aspect ratio 12:1. The comb drive strokes 5 μm under a driven potential of 180 V. The natural frequency for the first mode of this comb drive is about 3 kHz. The testing results matched the simulation results very well. Several advantages of this technique are observed as follows: (1) the whole process is simple and low cost, (2) all the processes are performed under low temperature, below 140°C, (3) PMMA structure has less stress and higher flexibility compared with the counterpart on silicon or poly-silicon, and (4) the driven voltage is much lower compared with the silicon-based devices. The disadvantage of PMMA material is that it can not endure high temperature

    Integrated polymer photonics : fabrication, design, characterization and applications

    Get PDF
    [no abstract

    All-Polymer Microfluidic Systems with integrated Nanostructures for Cell Handling

    Get PDF
    corecore