1,035 research outputs found

    A polyhedral approach to computing border bases

    Full text link
    Border bases can be considered to be the natural extension of Gr\"obner bases that have several advantages. Unfortunately, to date the classical border basis algorithm relies on (degree-compatible) term orderings and implicitly on reduced Gr\"obner bases. We adapt the classical border basis algorithm to allow for calculating border bases for arbitrary degree-compatible order ideals, which is \emph{independent} from term orderings. Moreover, the algorithm also supports calculating degree-compatible order ideals with \emph{preference} on contained elements, even though finding a preferred order ideal is NP-hard. Effectively we retain degree-compatibility only to successively extend our computation degree-by-degree. The adaptation is based on our polyhedral characterization: order ideals that support a border basis correspond one-to-one to integral points of the order ideal polytope. This establishes a crucial connection between the ideal and the combinatorial structure of the associated factor spaces

    Computing the vertices of tropical polyhedra using directed hypergraphs

    Get PDF
    We establish a characterization of the vertices of a tropical polyhedron defined as the intersection of finitely many half-spaces. We show that a point is a vertex if, and only if, a directed hypergraph, constructed from the subdifferentials of the active constraints at this point, admits a unique strongly connected component that is maximal with respect to the reachability relation (all the other strongly connected components have access to it). This property can be checked in almost linear-time. This allows us to develop a tropical analogue of the classical double description method, which computes a minimal internal representation (in terms of vertices) of a polyhedron defined externally (by half-spaces or hyperplanes). We provide theoretical worst case complexity bounds and report extensive experimental tests performed using the library TPLib, showing that this method outperforms the other existing approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section 5 (using directed hypergraphs), detailed appendix; v3: major revision of the article (adding tropical hyperplanes, alternative method by arrangements, etc); v4: minor revisio

    Searching Polyhedra by Rotating Half-Planes

    Full text link
    The Searchlight Scheduling Problem was first studied in 2D polygons, where the goal is for point guards in fixed positions to rotate searchlights to catch an evasive intruder. Here the problem is extended to 3D polyhedra, with the guards now boundary segments who rotate half-planes of illumination. After carefully detailing the 3D model, several results are established. The first is a nearly direct extension of the planar one-way sweep strategy using what we call exhaustive guards, a generalization that succeeds despite there being no well-defined notion in 3D of planar "clockwise rotation". Next follow two results: every polyhedron with r>0 reflex edges can be searched by at most r^2 suitably placed guards, whereas just r guards suffice if the polyhedron is orthogonal. (Minimizing the number of guards to search a given polyhedron is easily seen to be NP-hard.) Finally we show that deciding whether a given set of guards has a successful search schedule is strongly NP-hard, and that deciding if a given target area is searchable at all is strongly PSPACE-hard, even for orthogonal polyhedra. A number of peripheral results are proved en route to these central theorems, and several open problems remain for future work.Comment: 45 pages, 26 figure
    corecore