878 research outputs found

    Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

    Full text link
    Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major computational challenge to today's power industry for the real-time operation of large-scale power grids. In this paper, we propose a new technique for reformulation of the rank constraints using both principal and non-principal 2-by-2 minors of the involved Hermitian matrix variable and characterize all such minors into three types. We show the equivalence of these minor constraints to the physical constraints of voltage angle differences summing to zero over three- and four-cycles in the power network. We study second-order conic programming (SOCP) relaxations of this minor reformulation and propose strong cutting planes, convex envelopes, and bound tightening techniques to strengthen the resulting SOCP relaxations. We then propose an SOCP-based spatial branch-and-cut method to obtain the global optimum of AC OPF. Extensive computational experiments show that the proposed algorithm significantly outperforms the state-of-the-art SDP-based OPF solver and on a simple personal computer is able to obtain on average a 0.71% optimality gap in no more than 720 seconds for the most challenging power system instances in the literature

    Extended Formulations in Mixed-integer Convex Programming

    Full text link
    We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201

    (Global) Optimization: Historical notes and recent developments

    Get PDF
    Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width of scope of current computational approaches and theoretical results about nonconvex optimization problems. Before the presentation of the recent developments, which are subdivided into two parts related to heuristic and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the initial attempts, survived, what was not considered at all as well as a few approaches which have been recently rediscovered, mostly in connection with machine learning

    A Framework for Globally Optimizing Mixed-Integer Signomial Programs

    Get PDF
    Mixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener, Floudas in J. Glob. Optim., 2012. doi:10.1007/s10898-012-9874-7), this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to ε-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers. © 2013 Springer Science+Business Media New York
    corecore